Processamento de Imagens Médicas

Prof. Luiz Otávio Murta Junior

Processamento de Imagens Médicas: Programa

- Fundamentos de imagem
- O modelo de imagem
- Brilho, contraste, luminância
- A imagem digital
- Quantização, amostragem e discretização
- Histograma
- Melhoramento de Imagens
- Métodos espaciais

- Suavização
- Realce de bordas
- Equalização de imagens
- Análise de imagens
- Formas
- Textura
- Uso de softwares para processamento de imagens
- SciLab; Khoros; NIH Image; ImageJ

Proc. de Imagens Médicas: Fundamentos de imagem

- Representarão de imagens digitais
- Passos fundamentais em processamento de imagens
- Elementos de sistemas de processamento de imagens digitais
- Aquisição de imagens
 - Armazenamento
 - Processamento
 - Comunicação
 - Exibição

Proc. de Imagens Médicas: Fundamentos de imagem

- Elementos de percepção visual
 - Estrutura do olho humano
 - Formação da imagem do olho
 - A adaptação ao brilho e discriminação
- Um modelo simples de imagem
- Amostragem e quantização
- Amostragem e quantização uniformes
 - Amostragem e quantização não uniformes

Transformações simples de intensidade

Processamento de histograma

Subtração de imagens

Média de imagens

Filtragem espacial

- Fundamentos
- Filtros de suavização
- Filtros de aguçamento

Realce no domínio da freqüência

- Filtragem passa-baixas
- Filtragem passa-altas
- Filtragem homomórfica

 Geração de mascaras espaciais a partir de especificações no domínio da freqüência

- Processamento de imagens coloridas
 - Fundamentos de cores
 - Modelos de cores
 - Processamento de imagens em pseudo-cores
 - Processamento de imagens coloridas

Proc. de Imagens Médicas: Restauração de imagens

- Transformada de Fourier bidimensional
- Espaço de Fourier
- Filtros em freqüências
 - Passa-alta
 - Passa-baixa
 - Passa-faixa
- Desconvolução
 - Filtragem inversa
 - Filtragem pseudo-inversa
 - Filtro de mínimo médio quadrático (Wiener)

Proc. de Imagens Médicas: Segmentação de imagens

- Detecção de descontinuidades
- Detecção de pontos
- Detecção de linhas
- Detecção de bordas
- Detecção combinada

Proc. de Imagens Médicas: Segmentação de imagens

- Ligação de bordas e detecção de fronteiras
- Processamento local
- Processamento global através da transformada de Hough
- Processamento global através de técnicas baseadas Em grafos
- Limiarização
- Difusão anisotrópica

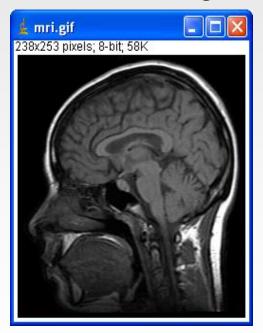
Proc. de Imagens Médicas: Morfologia matemática

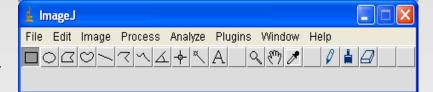
- Dilatação e erosão
- Abertura e fechamento
- Transformada hit-ou-miss
- Alguns algoritmos morfológicos básicos
- Extensões para imagens em níveis de Cinza

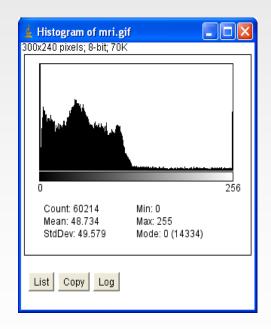
Proc. de Imagens Médicas: transformações geométricas

- Interpolação
 - Vizinhos próximos
 - Linear
 - "Splines"
- Transformações geométricas
 - Transformação rígida
 - Transformação elástica
- Corregistro de imagens
 - Fusão de imagens

Processamento de Imagens Médicas: Programa


- Principais dispositivos Geradores de Imagens Médicas
 - Raio-X
 - Ultra-som
 - Ressonância Magnética Nuclear
 - Tomografia princípios
 - Medicina Nuclear


Proc. de Imagens Médicas: ImageJ


Criado pelo NIH(National Institute of Healty)

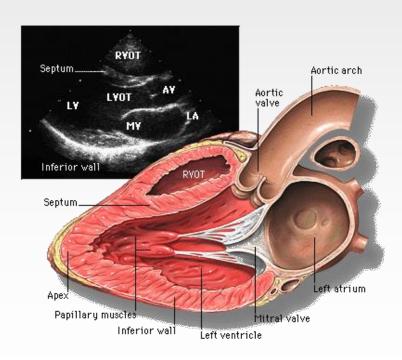
Sucessor do Image.

httd://rsb.info.nih.gov/ij/

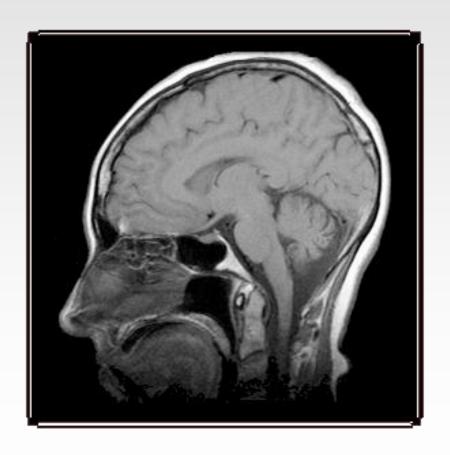
Proc. de Imagens Médicas: ImageJ

Exemplo de código para inverter imagens

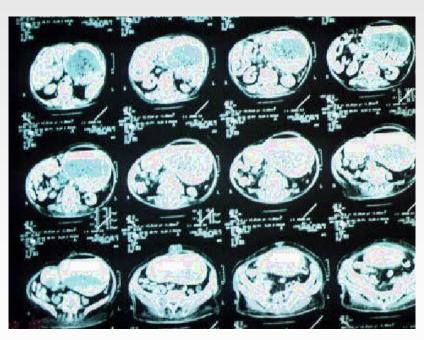
```
import ij.ImagePlus;
import ij.plugin.filter.PlugInFilter;
import ij.process.ImageProcessor;
public class My_Inverter implements PlugInFilter {
       public int setup(String arg, ImagePlus im) {
              return DOES_8G; // this plugin accepts 8-bit grayscale images
       public void run(ImageProcessor ip) {
              int w = ip.getWidth();
              int h = ip.getHeight();
              // iterate over all image coordinates
              for (int u = 0; u < w; u++) {
                     for (int v = 0; v < h; v++) {
                            int p = ip.getPixel(u, v);
                            ip.putPixel(u, v, 255-p);
```



Raio-X

- Radiografia convencional
- Radiografia digital
- Angiografia


Ultra-som

- Ecocardiografia
- Obstétrico
-

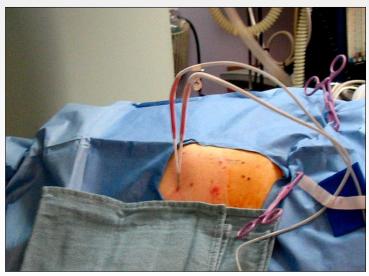


- Ressonância Magnética Nuclear
 - Antómica
 - Funcional

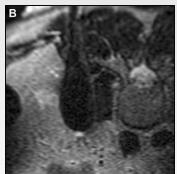
Tomografia princípios

- Medicina Nuclear
 - SPECT
 - PET
 - Dinâmico

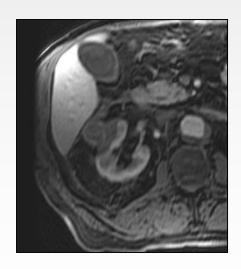
– ...


- Medicina Nuclear
 - SPECT
 - PET
 - Dinâmico
 - ...

Proc. de Imagens Médicas: Terapias guiadas por imagens - IGT



IGT: Objetivos de terapias guiadas por imagens

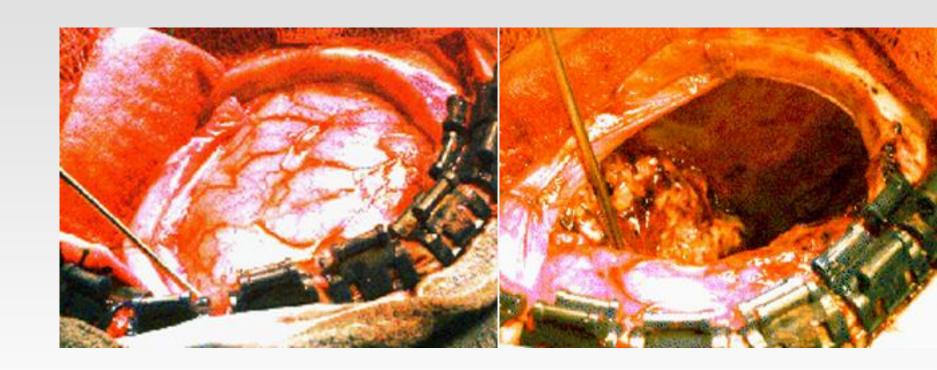


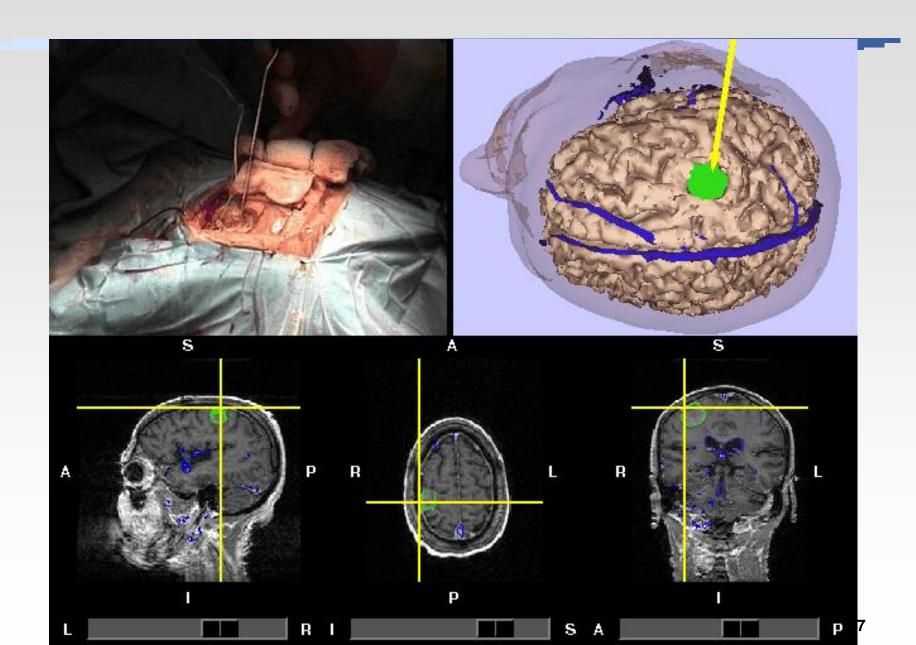
- > Definir
- > Planejar
- > Monitorar
- > Controlar
- > Avaliar

IGT: Exemplos de procedimentos em terapias guiadas por imagens

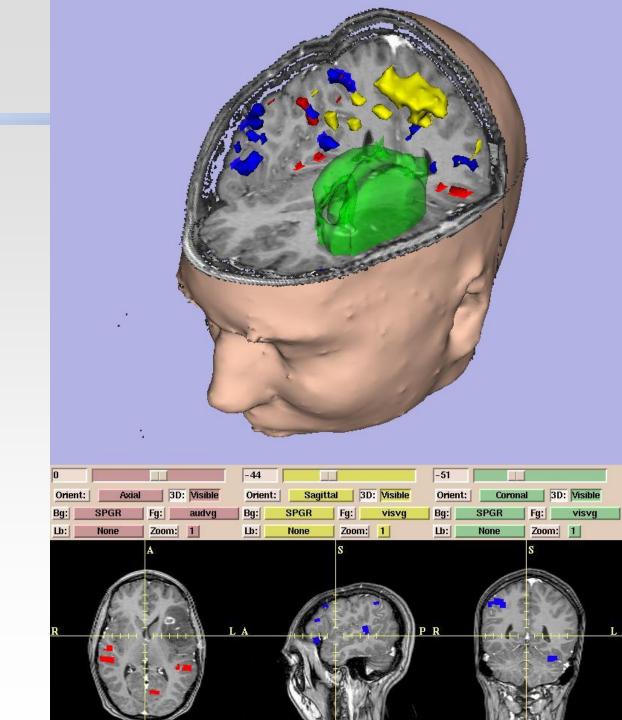


CT Intra-Proc


MRI Pre-Proc

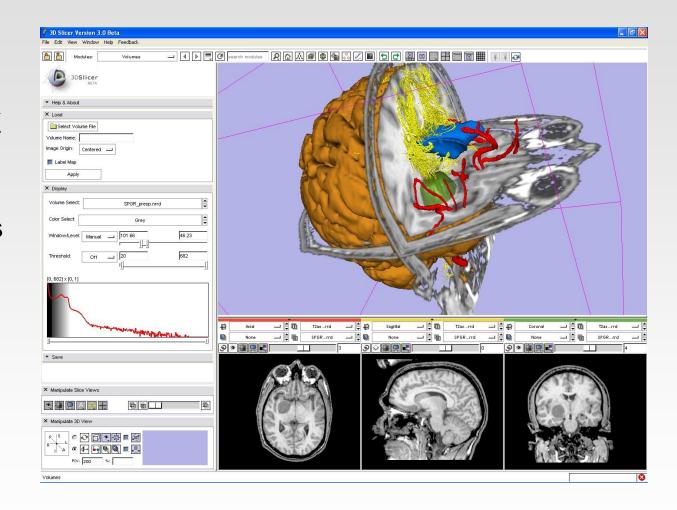

Registered CT & MRI

Cirurgias convencionais: visualizando superfícies

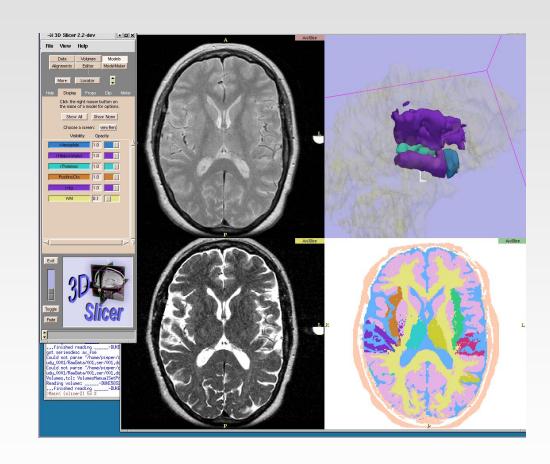


IGT: "Vendo" através das superfícies

3D Slicer:


- Visualização
- Alinhamento
- Segmentação
- Mensuração
- Integração em tempo real

3D Slicer


- Disponível livremente
- Interface Qt e VTK
- Algoritmos ITK
- Extensível através de médulos
- Open source:
 - www.slicer.org

3D Slicer: Gernciamento Imagem / Cena

- Arquivos MRML (XML) armazenam a descrição da cena:
 - Volumes (imagens, label maps)
 - Modelos
 - Transformação Affine
 - Dados de cena (cameras, Cores, fiduciais, etc).

Avaliação

Critérios de Avaliação

- Duas provas escritas
 - » 4 pontos cada uma
- Dois trabalhos práticos
 - » Aplicação em duplas c/ tema a ser escolhido até dia 4 de maio
 - » Apresentação, por escrito, da temática e o problema.: Valerá 1 ponto
 - » Apresentação da solução ao tema no fim do semestre: Valerá1 ponto
- Relatórios semanais
 - » Ajudam na compreensão da matéria e poderão ajudar na nota

Recuperação

Uma prova escrita dia ???.

Cronograma

17/02 – Apresentação da disciplina
20/02 - Introdução e modelos de imagens
24/03 – Carnaval
27/02 – Transformações pontuais
02/03 - Filtros espaciais
05/03 - Filtros espaciais
09/03 – Espaço de Fourier
12/03 – Espaço de Fourier
16/03 – Espaço de Fourier
19/03 – Filtros em frequências
23/03 – Filtros em frequências
26/03 – Filtros em frequências
30/03 – Morfologia matemática
02/04 – Morfologia matemática
06/04 – Não haverá aula (Semana Santa)
09/04 - Não haverá aula (Semana Santa)
13/04 – Segmentação
16/04 – Segmentação
20/04 - Tiradentes

23/04 - Prova I

```
27/04 - Tomografia e Radom
30/04 - Tomografia e Radom
04/05 – interpolação, def. do tema e entrega do trabalho I
07/05 - interpolação
11/05 – interpolação
14/05 – Tomografia e Radom
18/05 – Tomografia e Radom
21/05 - Transformações geométricas
30/05 - Transformações geométricas
04/06 - Corregistro de imagens
07/06 - Corregistro de imagens
11/06 - Corregistro de imagens
14/06 - Recap
18/06 - Prova II
22/06 - Apresentação e entrega do trabalho
25/06 - Apresentação e entrega do trabalho
```

Bibliografia

- 1. BURGER Wilhelm & BURGE Mark J.. Digital Image Processing: An Algorithmic Introduction using Java ISBN: 978-1-84628-379-6
- GONZALEZ, Rafael C Processamento de Imagens Digitais. Editora: BLUCHER - 2000 ISBN: 8521202644
- 3. SPRAWLS Jr., P., Physical principals of medical imaging, second edition, Medical Physics Publishing, 1995.

Comentários Finais

Dúvidas

- Local: Sala 518 (Bloco 1 Inferior)
- E-mail: murta@ffclrp.usp.br

Material do Curso

- Será disponibilizado em arquivos .pdf no site http://portal.ffclrp.usp.br/
- Para ler os arquivos .pdf, pode-se utilizar o programa Adobe Acrobat Reader (disponível em http://www.brasil.adobe.com/acrobat)