Lista 5

- 1. Calcular a menor distancia do ponto (0,2) à curva de equação $y=x^2-4$.
- 2. A menor distancia do ponto (x_0, y_0) à reta de equação ax + by + c = 0 é?
- 3. Determinar a caixa retangular sem tampa de maior volume que pode ser construida de modo que sua área seja $36m^2$.
- 4. Determinar a caixa retangular sem tampa de maior volume que pode ser construída de modo que sua área seja m^2 .
- 5. Estudar os extremantes locais e globais das seguintes funções:
 - (a) $f(x) = (x y)^4 + (x + y + 2)^2$
 - (b) $f(x) = 1 x^4 y^4$
 - (c) $f(x) = x^3 + (x y)^2$
 - (d) $f(x) = x^3 + y^3 3xy$ na região triangular de vertices (0,0), (0,1) e (1,0).
- 6. Achar os pontos extremantes de $f(x,y)=x+y^2$ na região $D=\{(x,y):(x-2)^2+y^2\leq 1\}$
- 7. O disco plano $B_1(0,\mathbb{R}^2) = \{(x,y) : x^2 + y^2 \le 1\}$ aquece-se de modo que a temperatura no ponto (x,y) é dada por $T(x,y) = x^2 + 2y^2 x$. Determinar os pontos de maior e menor temperatura.
- 8. Em relação ao sistema de coordenadas cartesianas, uma pessoa esta na origem, no interior de uma praça cujo contorno é dado pela equação $3x^2 + 6y^2 = 140$. A que ponto a pessoa deve se dirigir para sair da praça e caminhar o menos possível.
- 9. (multiplicadores de Lagrange) Em relação ao sistema de coordenadas cartesianas, uma pessoa esta na origem, no interior de uma praça cujo contorno tem por equação $3x^2 + 4xy + 6y^2 = 140$. A que ponto a pessoa deve se dirigir para sair da praça e caminhar o menos possível.
- 10. Problemas do Guidorizzi: pag: 322:1.a, 1.b, 1.c., 2,3,4,5.
- 11. Suponha que $f: B_1(0,\mathbb{R}^2) \to \mathbb{R}$ é de classe C^1 e que para todo (x,y) no interior do disco existe $v \in \mathbb{R}^2$ tal que $\frac{\partial f}{\partial v}(x,y) = 0$. Mostre que f tem um máximo global e um mínimo global na fronteira (na circunferência de raio 1)
- 12. De um exemplo de uma função definida sobre um aberto de \mathbb{R}^2 que não tenha máximo global, nem mínimo global. Existe uma função definida sobre um aberto de \mathbb{R}^2 que não tenha máximo local, nem mínimo local.?

1