From stochastic hamiltonian systems to stochastic compressible Euler equation

Jesus Manuel Correa Lora and Christian Horacio Olivera Universidade de Campinas (UNICAMP), Brasil

For all $N \in \mathbb{N}$ we consider N particles in \mathbb{R}^d where the position $X_t^{k,N}$ verifies for $k = 1, \dots, N$

$$d^{2}X_{t}^{k,N} = -\frac{1}{N}\sum_{l=1}^{N}\nabla\phi_{N}\left(X_{t}^{k,N} - X_{t}^{l,N}\right)dt + \sigma\left(X_{t}^{k,N}\right)\frac{dX_{t}^{k,N}}{dt} \circ dB_{t} \qquad (1)$$

where $\{B_t^i\}_{t \in [0,T]}, i \in \mathbb{N}\}$ is a family of standard \mathbb{R}^d -valued Brownian motions defined on a filtered probability space. Our aim is the study of the asymptotics as $N \to \infty$ of the time evolution of the whole system of all particles. Therefore, we investigate the empirical processes:

$$S_{t}^{N} := \frac{1}{N} \sum_{k=1}^{N} \delta_{X_{t}^{k,N}},$$
$$V_{t}^{N} := \frac{1}{N} \sum_{k=1}^{N} V_{t}^{k,N} \delta_{X_{t}^{k,N}}$$

where $dX_t^{k,N}$: = $V_t^{k,N}dt$ is the velocity of the *kth* particle, and δ_a , denotes the Dirae measure at a. We shall prove that S_t^N and V_t^N converge as $N \to \infty$ to solutions of the continuity equation and the stochastic Euler equation, respectively.