

Árvores

Algoritmos e Estruturas de Dados I

- Nesta aula veremos conceitos e definições sobre árvores
- □ Diferentemente das estruturas de pilhas, filas e listas que são lineares, uma árvore é uma estrutura de dados não linear

Introdução

- Como visto, listas podem ser convenientemente definidas da seguinte forma: Uma lista do tipo T é
 - Uma lista (estrutura) vazia ou
 - Uma concatenação (cadeia) de um elemento do tipo T com uma lista cujo tipo básico também seja T
- Nota-se que a recursão é utilizada como ferramenta de definição
- Um árvore é uma estrutura sofisticada cuja definição por meio de recursão é elegante e eficaz
- ☐ Uma árvore, com tipo T, pode ser definida recursivamente da seguinte forma:
 - Uma árvore (estrutura) vazia ou
 - Um nó do tipo T associado a um número finito de estruturas disjuntas de árvore do mesmo tipo T, denominadas subárvores

Introdução

- Observando a similaridade das definições é evidente que uma lista possa ser considerada como uma árvore na qual cada nó tem, no máximo, uma única subárvore
- □Por este motivo, uma lista é também denominada árvore degenerada

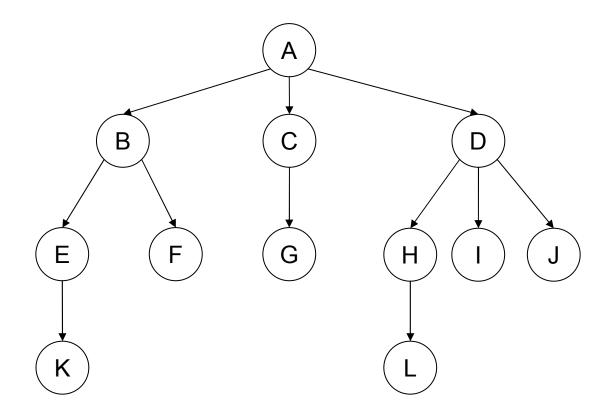
2

Definição

- ☐ Uma árvore é um conjunto finito de um ou mais nós (ou vértices) tais que
 - Existe um nó especial, denominado raiz
 - Os demais nós encontram-se desdobrados em n ≥ 0 conjuntos disjuntos T₁, ..., T_n sendo que cada conjunto se constitui numa árvore
 - T₁, ..., T_n são denominadas subárvores da raiz
- Utilizaremos grafos para representar árvores
- ☐ Todavia, existem outras representações equivalentes para árvores: conjuntos aninhados (diagrama de inclusão), parênteses aninhados, paragrafação (indentation)

4

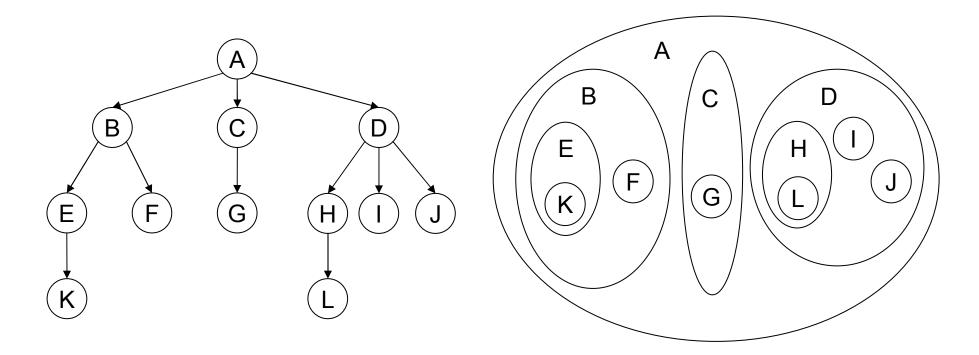
☐Uma árvore é um grafo sem ciclos



_

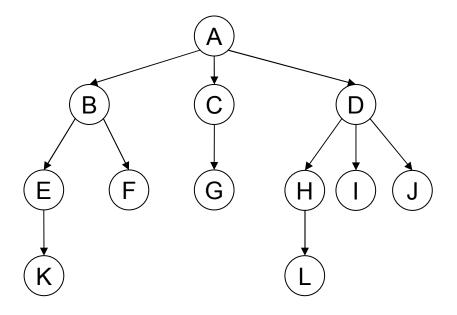
□ Grafo

Conjuntos aninhados



c

☐ Grafo

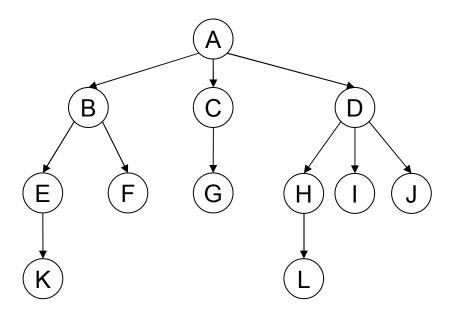


☐ Parênteses aninhados

(A (B (E (K) (F)) C (G)
 D (H (L) (I) (J))))

7

□ Grafo



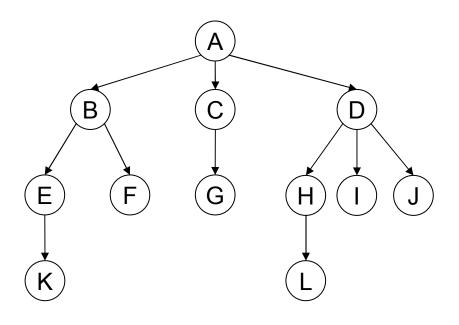
Paragrafação

A B F K C

D H I

0

□ Grafo



Paragrafação

Α

. .B

. . . E

. K

...F

. . C

. . . . G

. . D

...H

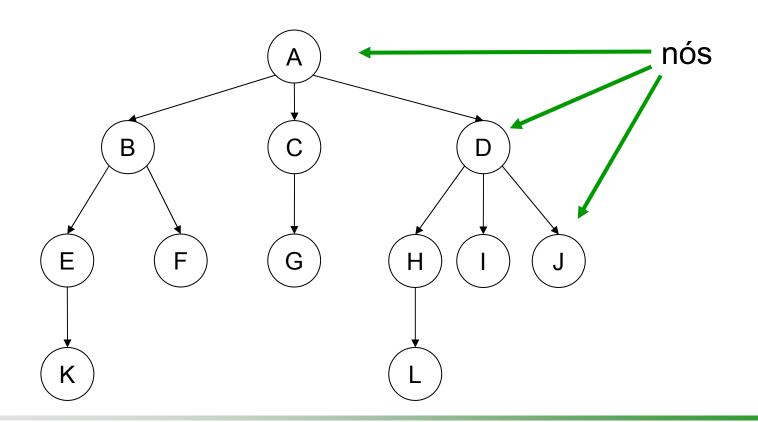
. I

. . . I

. . . J

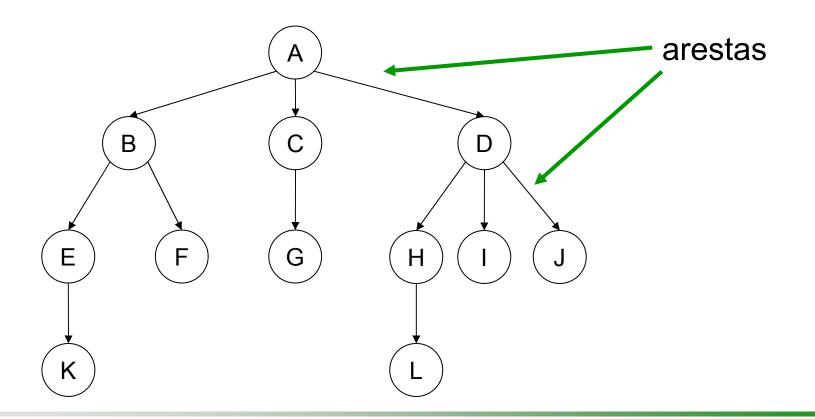
Nós (Vértices)

☐ Esta árvore possui 12 nós (ou vértices)



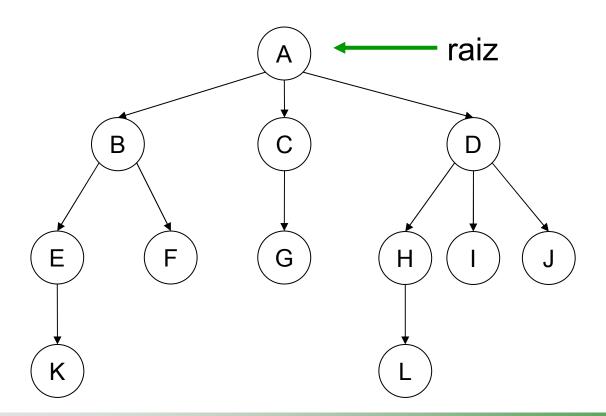
Arestas (Arcos)

□Uma aresta (arco) liga um nó a outro



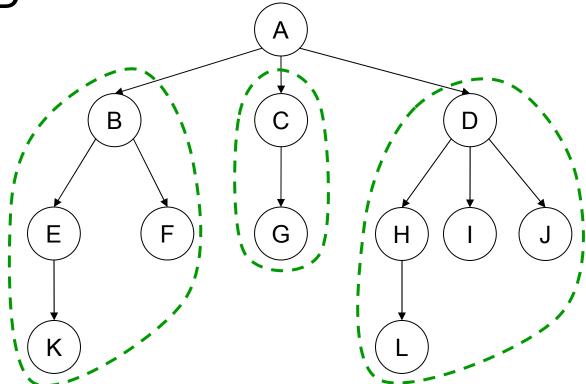
Raiz

■Normalmente as árvores são desenhadas de forma invertida, com a raiz em cima



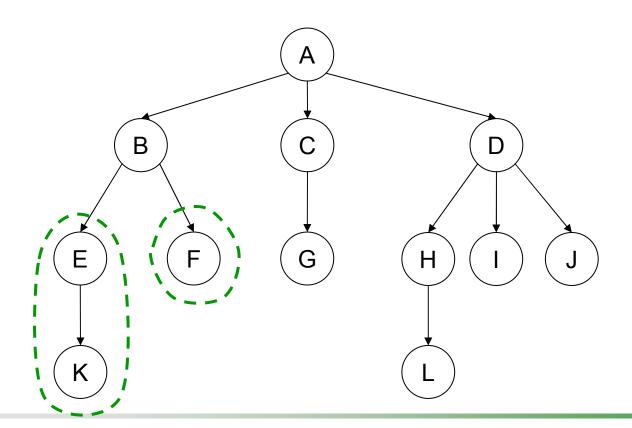
Subárvores

□No exemplo, o nó A possui três subárvores (ramos) cujas raízes são B, C e D



Subárvores

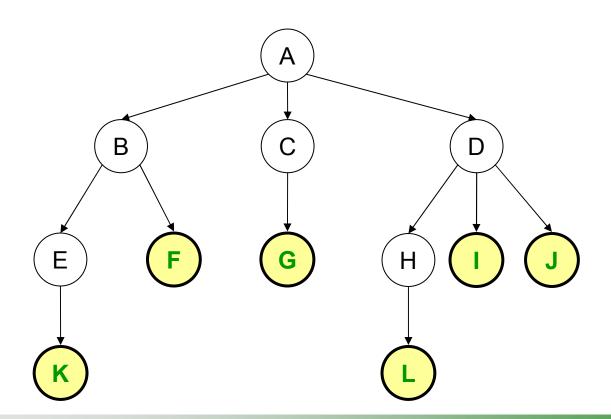
■No exemplo, o nó B possui duas subárvores (ramos) cujas raízes são E e F



4.4

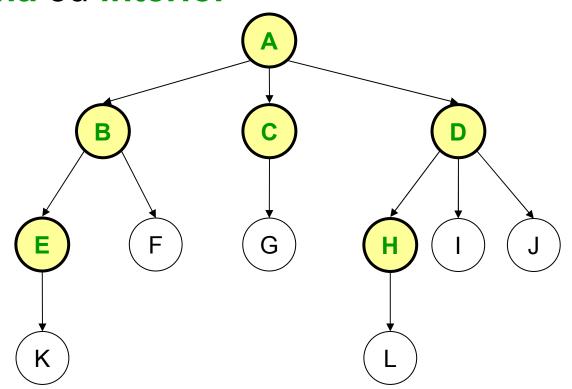
Folha

□ Um nó sem descendentes (sem filhos ou sem sucessores) é denominado terminal ou folha



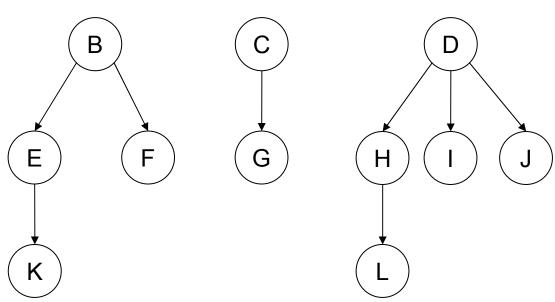
Não-Folha

☐ Um nó com descendentes (com filhos ou com sucessores) é denominado não-terminal ou não-folha ou interior



Floresta

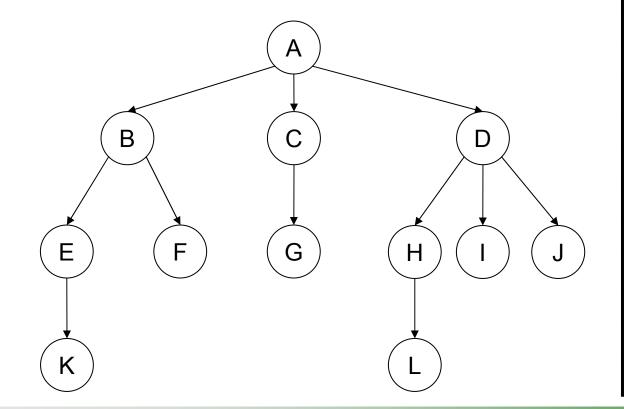
- Uma floresta é um conjunto de zero ou mais árvores
- ■No exemplo, temos 3 árvores que compõem uma floresta



Grau de um Nó

O número de descendentes (imediatos) de um nó

é denominado grau deste nó



,	
Nó	Grau
Α	
В	
С	
D	
E	
F	
G	
Н	
Ι	
J	
J K	

Grau de um Nó

O número de descendentes (imediatos) de um nó é

denominado grau deste nó

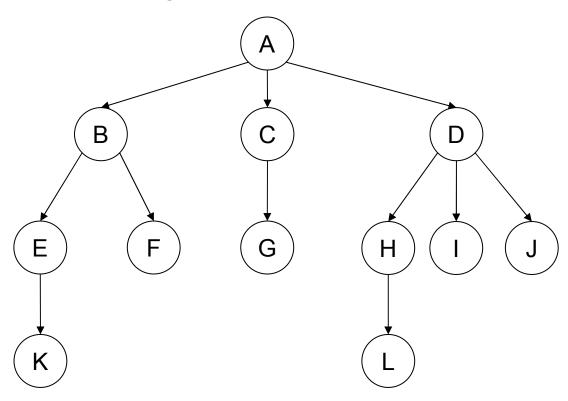
☐ Portanto, o grau de uma folha é zero



Nó	Grau
Α	3
В	2
С	1
D	3
E	1
F	0
G	0
Н	1
I	0
J	0
K	0
L	0

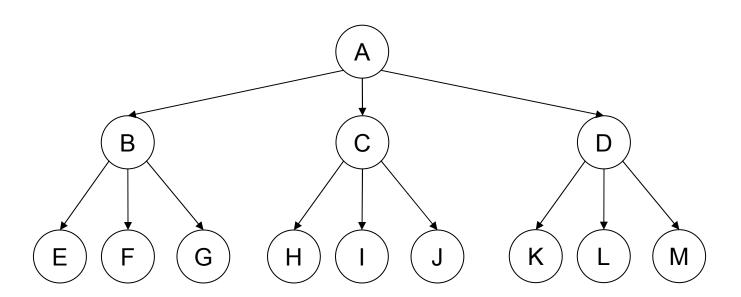
Grau de uma Árvore

- O grau máximo atingido pelos nós de uma árvore é denominado grau desta árvore
- No exemplo, o grau da árvore é 3



Árvore Completa

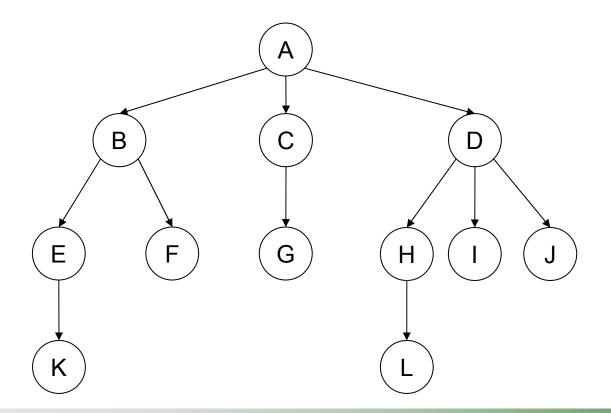
- ☐ Uma árvore de grau d é uma árvore completa (cheia) se
 - Todos os nós tem exatamente d filhos, exceto as folhas e
 - Todas as folhas estão na mesma altura
- No exemplo, a árvore de grau d=3 é completa



Pai

☐ As raízes das subárvores de um nó X são os filhos de X;

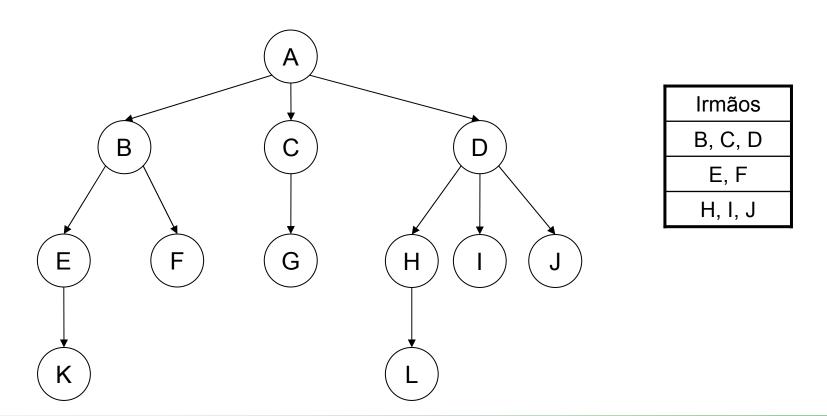
X é o pai dos filhos



Nó Pai	Nós Filhos
Α	B, C, D
В	E, F
С	G
D	H, I, J
E	K
F	-
G	-
Н	L
	-
J	-
K	-
L	-

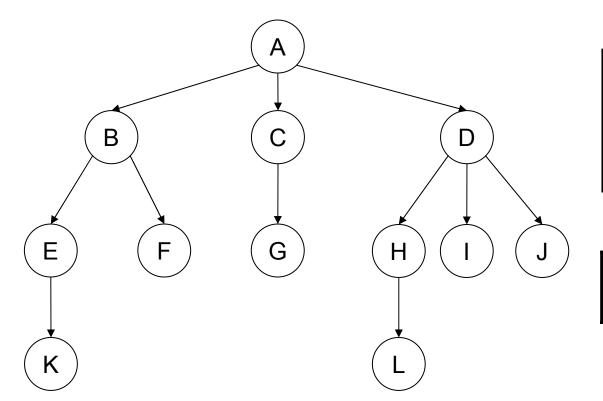
Irmão

☐ Os filhos (descendentes) de um mesmo nó pai (antecessor) são denominados irmãos



Avô & Demais Parentes

□ Podemos estender essa terminologia para avô, bisavô, e demais parentes



Nós	Avô
E,F,G,H,I,J	Α
K	В
L	D

Nós	Bisavô
K, L	A

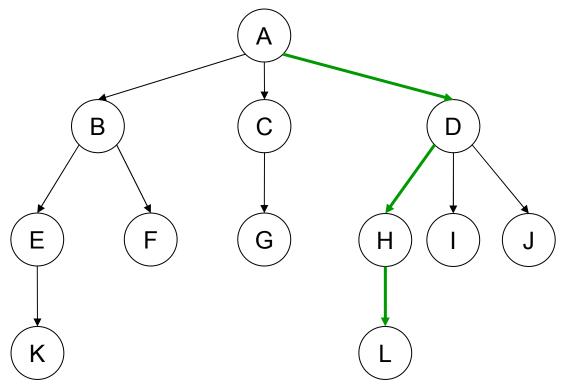
Caminho

- □ Uma seqüência de nós distintos v₁, v₂, ..., v_k tal que sempre existe a relação
 - "v_i é filho de v_{i+1}" ou "v_i é pai de v_{i+1}", 1 ≤ i < k
 é denominada um caminho entre v₁ e v_k
- □ Diz-se que v₁ alcança vk ou que vk é alcançado por v₁
- Um caminho de k vértices $v_1, v_2, ..., v_k$ é formado pela seqüência de k-1 pares de nós (v_1, v_2) , (v_2, v_3) , ..., (v_{k-2}, v_{k-1}) , (v_{k-1}, v_k)
 - k-1 é o comprimento do caminho
 - Cada par (v_i, v_{i+1}) é uma aresta ou arco, 1 ≤ i < k

Caminho

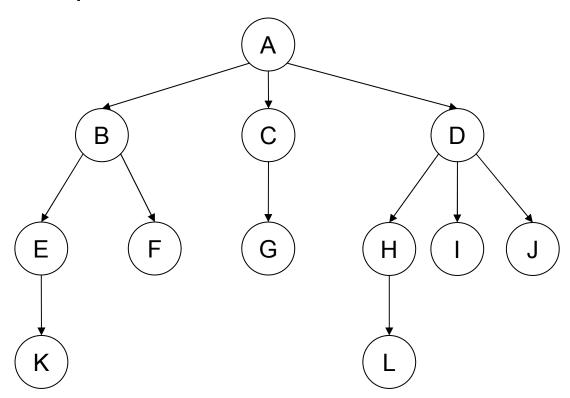
■ No Exemplo:

- A, D, H, L é um caminho entre A e L, formando pela seqüência de arestas (A,D), (D,H), (H,L)
- O comprimento do caminho entre A e L é 3



Antecessores

- □ Os antecessores (antepassados) de um nó são todos os nós no caminho entre a raiz e o respectivo nó
- No exemplo, os antecessores de L são A, D e H

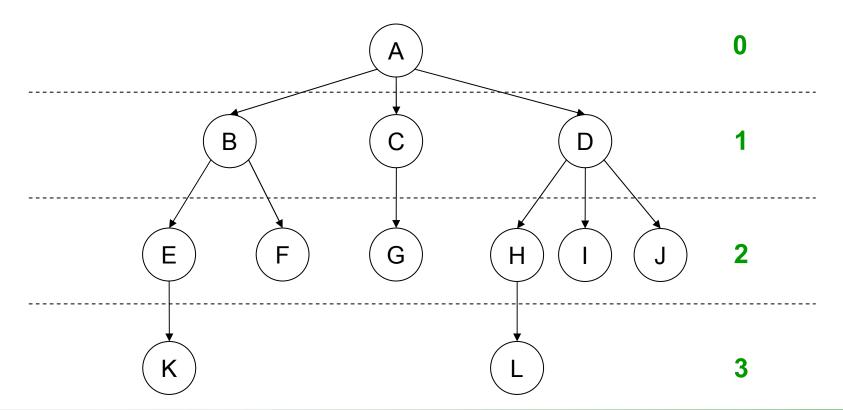


Nível

- □ O nível (ou profundidade) de um nó é definido admitindo-se que a raiz está no nível zero (nível um)
- ☐ Estando um nó no nível i, seus filhos estarão no nível i+1
- Não existe um padrão quanto ao nível adotado para a raiz, que determina o nível dos demais nós
- ☐ Assim, a raiz pode ser admitida como estando
 - No nível zero
 - Alternativamente, no nível um
- No restante desta apresentação, vamos adotar a raiz no nível zero
 - A adequação das fórmulas e algoritmos caso a raiz seja considerada no nível um é deixada como exercício

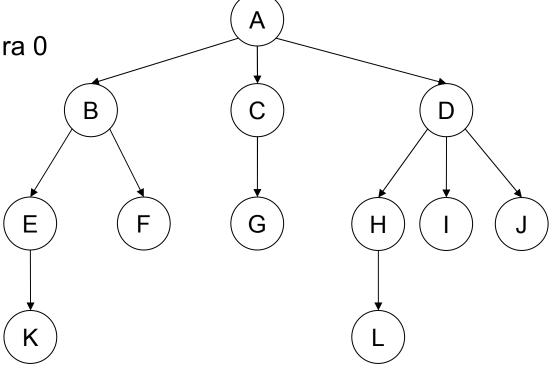
Nível

- No exemplo, os nós:
 - B, C e D estão no nível 1
 - K e L estão no nível 3



Altura de um Nó

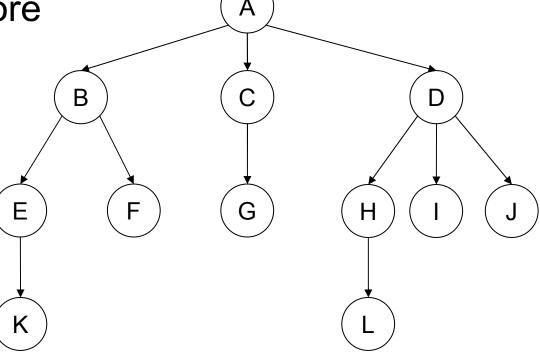
- ☐ A altura de um nó é o número de arestas no maior caminho desde o nó até um de seus descendentes
- ☐ Portanto, as folhas têm altura zero
- No exemplo, os nós:
 - K, F, G, L, I, J têm altura 0
 - E, C e H têm altura 1
 - B e D têm altura 2
 - A tem altura 3



Altura de uma Árvore

☐ A altura (ou profundidade) de uma árvore é o nível máximo entre todos os nós da árvore ou, equivalentemente, é a altura da raiz

No exemplo, a árvore possui altura 3

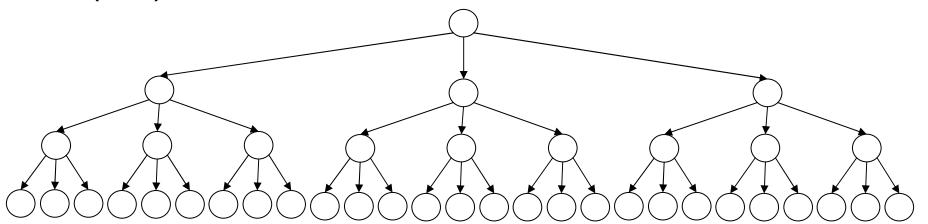


Número Máximo de Nós

- O número máximo de nós n(h,d) em uma árvore de altura h é atingido quando todos os nós possuírem d subárvores, exceto os de nível h, que não possuem subárvores
- □Para uma árvore de grau d
 - Nível 0 contém d⁰ (um) nó (raiz)
 - Nível 1 contém d¹ descendentes da raiz
 - Nível 2 contém d² descendentes
 - ...
 - Nível i contém di descendentes

Número Máximo de Nós

- ☐ Assumindo d=3
 - Nível 0: 1 nó (raiz)
 - Nível 1: 3 nós
 - Nível 2: 3² = 9 nós
 - Nível 3: 3³ = 27 nós
- \square n(3,3)= 1 + 3 + 9 + 27 = 40 nós



Número Máximo de Nós

□Portanto, o número máximo de nós n=n(h,d) é soma do número de nós em cada nível, ou seja:

$$n = n(h,d) = \sum_{i=0}^{h} d^{i} = d^{0} + d^{1} + d^{2} + \dots + d^{h}$$

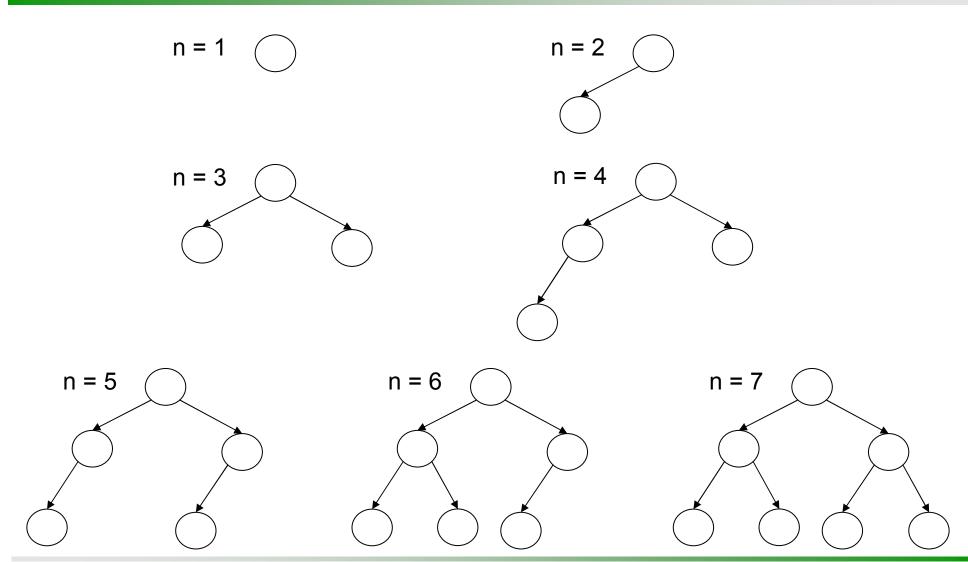
$$\sum_{i=0}^{h} d^{i} = \frac{d^{h+1} - 1}{d - 1}, \ d > 1$$

25

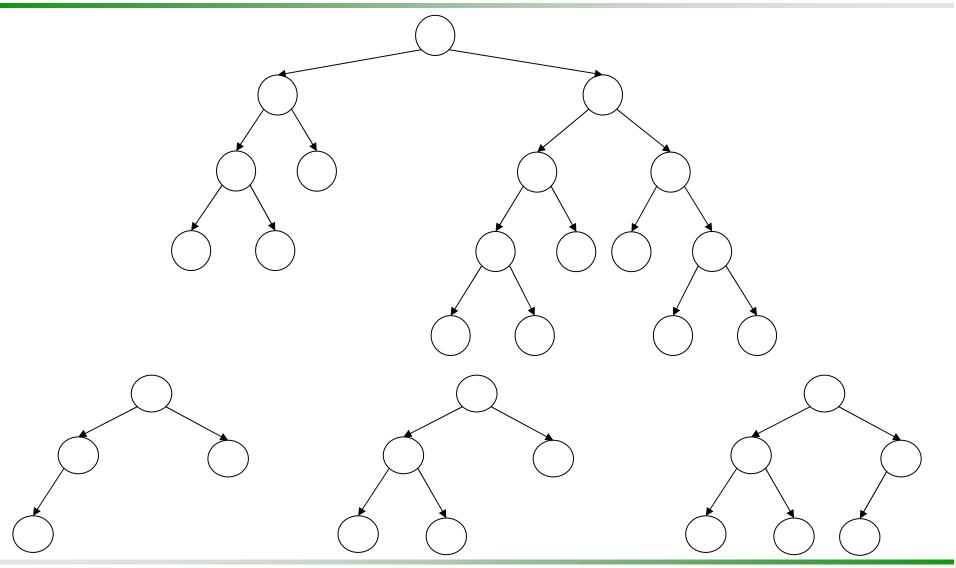
Árvores (Perfeitamente) Balanceadas

- Uma árvore é balanceada se, para cada nó, a altura de suas subárvores diferem, no máximo, de uma unidade
- □Uma árvore é perfeitamente balanceada se, para cada nó, os *números de nós* em suas subárvores diferem, no máximo, de uma unidade
- ☐ Todas as árvores perfeitamente balanceadas também são árvores balanceadas

Árvores Perfeitamente Balanceadas de Grau 2

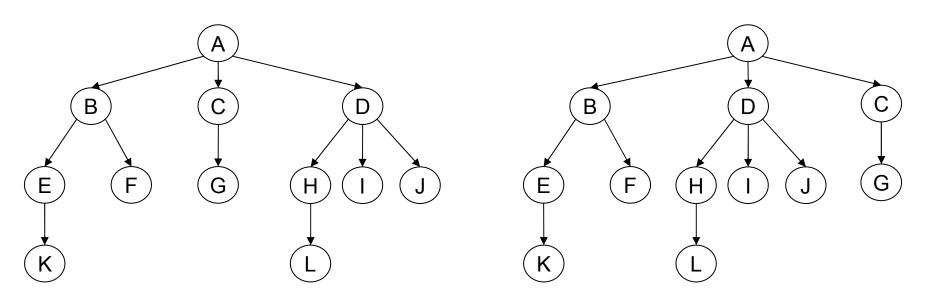


Árvores Balanceadas de Grau 2



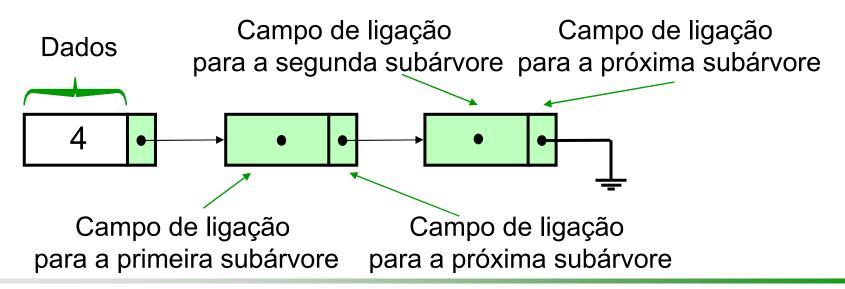
Árvore Orientada

- ☐ Uma árvore orientada (ordenada) é uma árvore na qual os filhos de cada nó são orientados (ordenados)
- ☐ A orientação é da esquerda para a direita
- As duas árvores orientadas seguintes são distintas



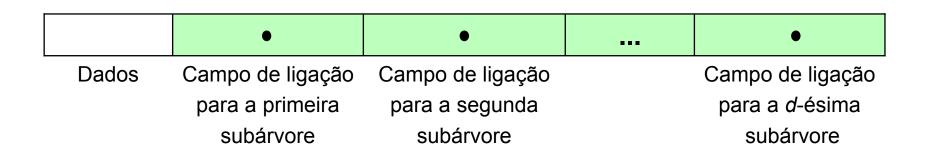
Implementação de Árvores

- □Árvores podem ser implementadas utilizando listas encadeadas
 - Cada nó possui um campo de informação e uma série de campos de ligação, de acordo como número de filhos daquele nó



Implementação de Árvores

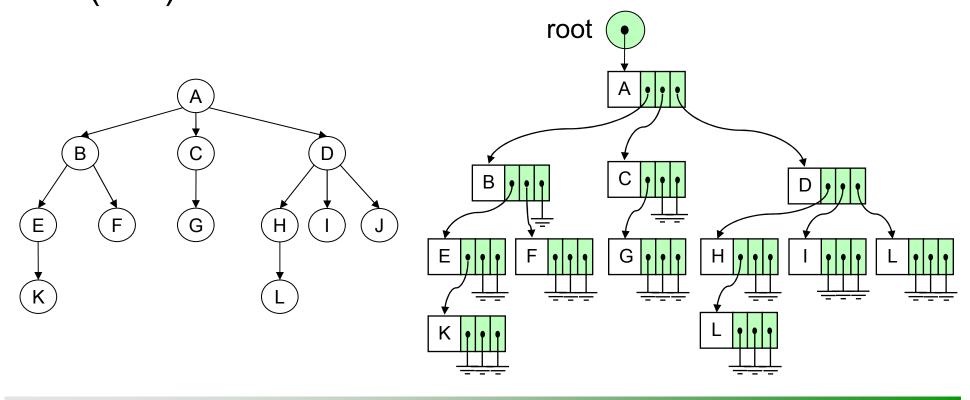
□Entretanto, é mais simples o caso em que cada nó tem um número máximo de filhos *d* pré-estabelecido



11

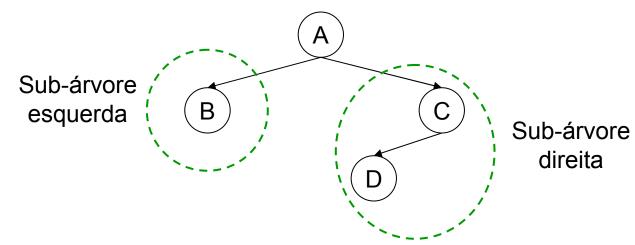
Implementação de Árvores

- ☐ Por exemplo, a árvore ☐ ... pode ser ternária seguinte (d=3)...
 - implementada como

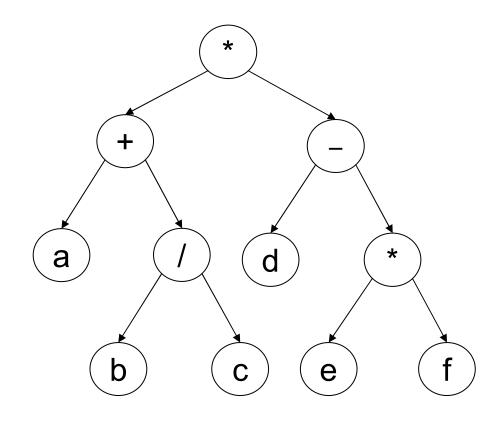


Árvores Binárias (AB)

- ☐ Árvores binárias são árvores orientadas de grau 2
- Uma árvore binária é uma estrutura que é ou vazia ou possui 3 componentes:
 - Uma raiz
 - Uma subárvore esquerda
 - Uma subárvore direita
- As subárvores devem ser árvores binárias

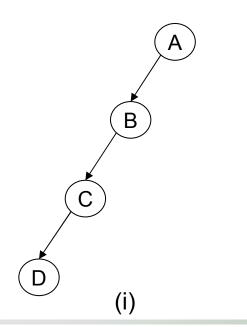


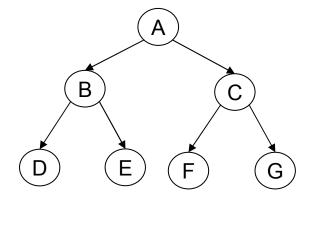
- □ Podemos, por exemplo, representar uma expressão aritmética (com operadores binários) por meio de uma AB, na qual cada operador é um nó da árvore e seus dois operandos representados como subárvores
- A árvore ao lado representa a expressão (a+b/c)*(d-e*f)



- □ As duas AB seguintes são distintas
 - (i) a primeira tem subárvore direita vazia
 - (ii) a segunda tem subárvore esquerda vazia

- ■Exemplos de AB
- □(i) assimétrica à esquerda (degenerada)
- □(ii) completa





(ii)

O número de máximo de nós em uma árvore binária de altura h é dado por:

$$n = n(h,2) = \sum_{i=0}^{h} 2^{i} = 2^{h+1} - 1$$

□Portanto, n elementos podem ser organizados em uma árvore binária de altura mínima ≈ log₂ n

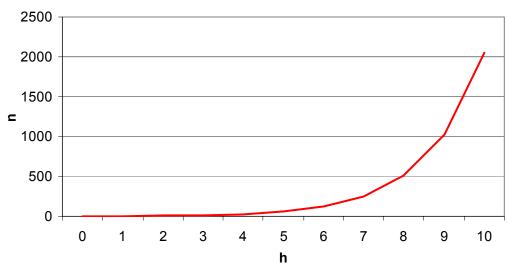
$$h = \lfloor \log_2(n+1) - 1 \rfloor$$

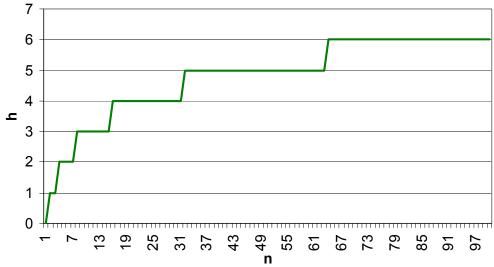
17

Árvores Binárias de Altura Mínima

h	n	
0	1	
1	3	
2	7	
3	15	
4	31	
5	63	
6	127	
7	255	
8	511	
9	1023	
10	2047	

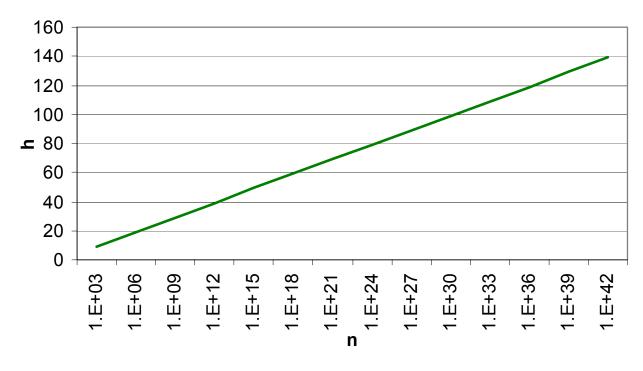
n	h
1	0
2	1
1 2 3	1
4	2
4 5	2
6	2
6 7 8	2
8	3
9	3
10	3
11	3
12	3
13	1 2 2 2 2 3 3 3 3 3 3 3 3 3 4
14	3
15	3
16	4



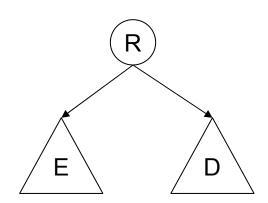


Árvores Binárias de Altura Mínima

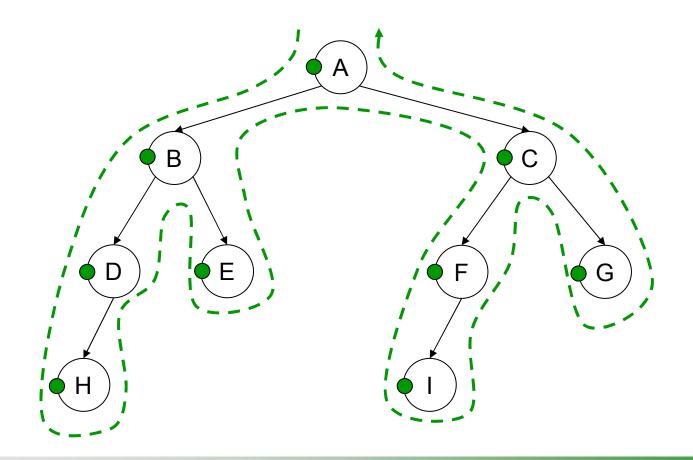
n	h
1.E+03	9
1.E+06	19
1.E+09	29
1.E+12	39
1.E+15	49
1.E+18	59
1.E+21	69
1.E+24	79
1.E+27	89
1.E+30	99
1.E+33	109
1.E+36	119
1.E+39	129
1.E+42	139



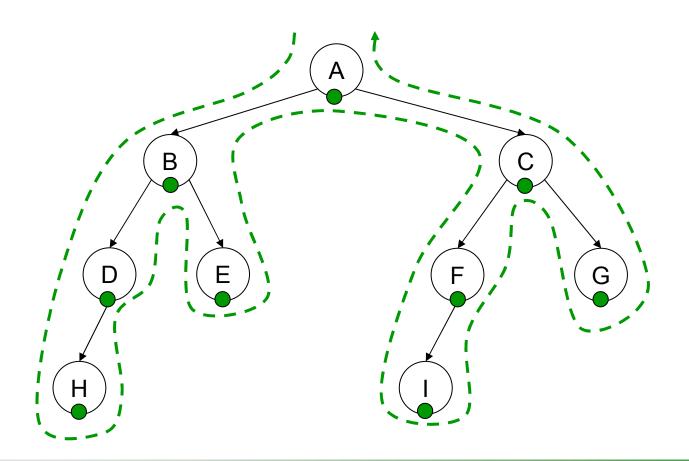
- □ Seja uma AB em que R denota sua raiz, E e D denotam as subárvores esquerda e direita, respectivamente
- □ Os nós de uma AB podem ser visitados de três formas (varredura da árvore):
 - Pré-ordem (pre-order): R, E, D
 visitar a raiz antes das subárvores
 - Em-ordem (in-order): E, R, D
 - Pós-ordem (post-order): E, D, R
 ❖visitar a raiz após visitar as subárvores



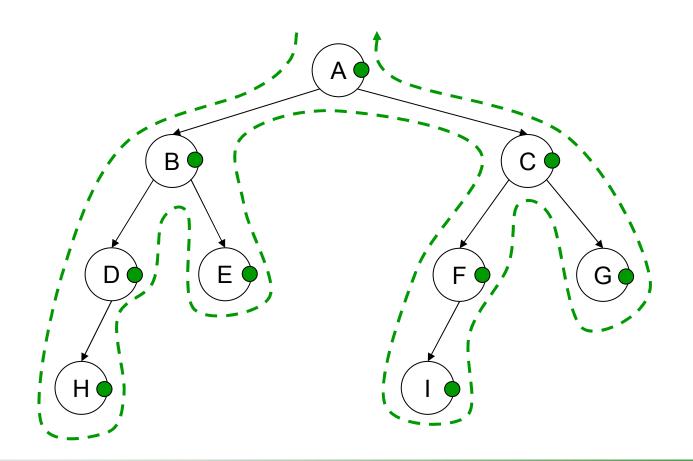
□Pré-ordem: A, B, D, H, E, C, F, I, G



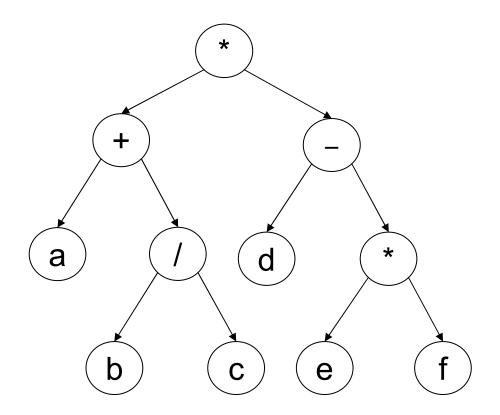
□Em-ordem: H, D, B, E, A, I, F, C, G



□Pós-ordem: H, D, E, B, I, F, G, C, A



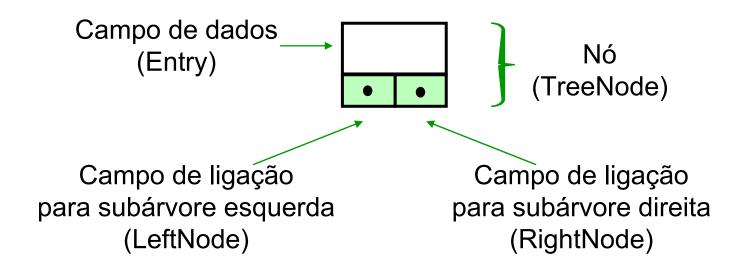
- ☐ Pré-ordem
 - * + a / b c d * e f
- □ Em-ordem
 - a + b / c * d e * f
- ■Pós-Ordem
 - a b c / + d e f * *

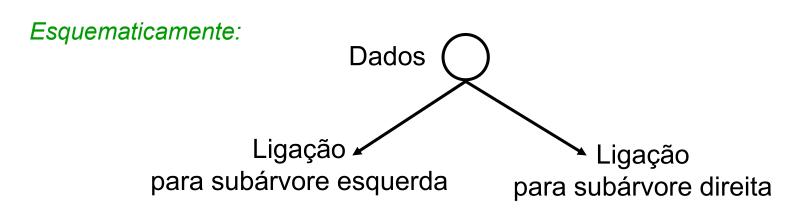


Implementação de Árvores Binárias

- É natural a implementação de árvores por meio de ponteiros
- □Como toda árvore possui uma raiz (*root*), uma árvore vazia pode ser representada por um ponteiro aterrado (NULL em C++)
- □ Cada nó em uma árvore binária possui um campo de dados, um ponteiro para a subárvore esquerda e um ponteiro para a sub-árvore direita

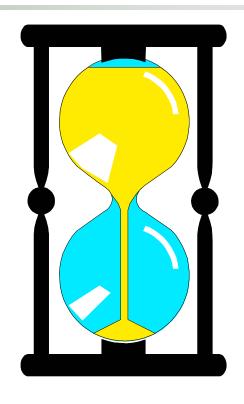
Implementação de Árvores Binárias





Questão

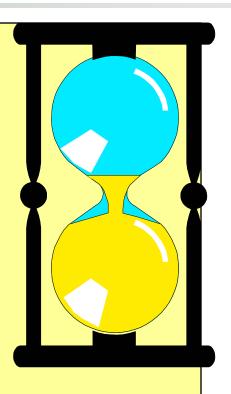
Utilize estas idéias para escrever uma declaração de tipo que poderia implementar uma árvore binária para armazenar valores inteiros.



Você tem 5 minutos para escrever a declaração

Uma Solução

```
class BinaryTree
{ public:
  BinaryTree();
  ~BinaryTree();
  void Insert(int x);
  void Delete(int x);
  bool Search(int x);
 private:
  // declaração de tipos
  struct TreeNode
                   // tipo de dado colocado na árvore
  { int Entry;
   TreeNode *LeftNode, *RightNode; // subárvores
  typedef TreeNode *TreePointer;
  // declaração de campos
  TreePointer root;
```



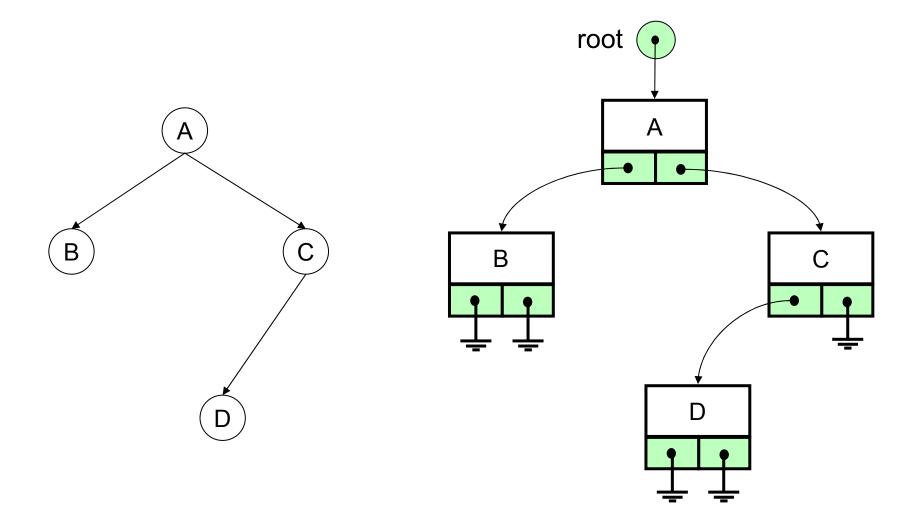
Uma Solução

```
class BinaryTree
{ public:
  BinaryTree();
  ~BinaryTree();
  void Insert(int x);
  void Delete(int x);
  bool Search(int x);
 private:
  // declaração de tipos
  struct TreeNode
  { int Entry; // tipo de dado colocado na árvore
   TreeNode *LeftNode, *RightNode; // subárvores
  typedef TreeNode *TreePointer;
  // declaração de campos
  TreePointer root;
```

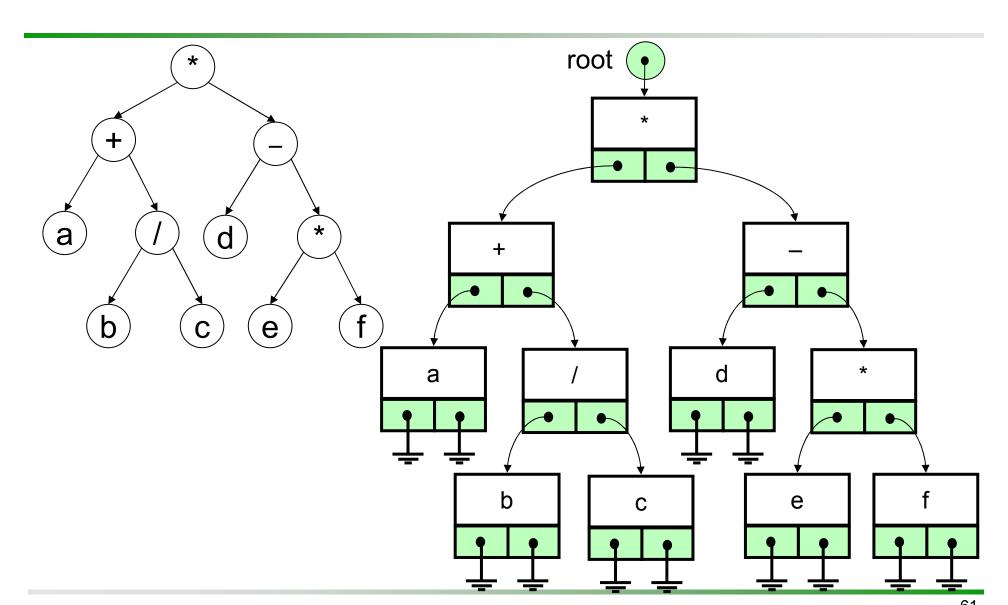
Observe que o tipo

TreeEntry nesse caso é
um inteiro

Implementação de Árvores Binárias



Implementação de Árvores Binárias



Operações Básicas

- Com a definição dada já é possível implementar alguns métodos para AB que também se aplicam para ABB (vista a seguir)
- ☐ Como os algoritmos em geral são recursivos, serão declarados dois métodos de mesmo nome
 - O método público que faz uma chamada ao método privado de mesmo nome, passando os parâmetros necessários para o método privado recursivo (normalmente a raiz; mas outros parâmetros também podem ser passados)
 - O método privado que efetivamente implementa o algoritmo recursivo

Número de Nós

int BinaryTree::Nodes();

- pré-condição: Árvore binária já tenha sido criada
- pós-condição: retorna o número de nós existentes na árvore
- □ Uma idéia para encontrar o número de nós é utilizar recursão:
 - Caso base: uma árvore vazia possui zero nós
 - Caso recursivo: uma árvore que contém um nó possui 1 (o próprio nó) somado ao número de nós na sua subárvore esquerda somado ao número de nós na sua subárvore direita

Número de Nós

```
int BinaryTree::Nodes() // método público
{ return Nodes(root);
int BinaryTree::Nodes(TreePointer &t) // método privado
 if(t == NULL)
   return 0;
 else
  return 1 + Nodes(t->LeftNode) + Nodes(t->RightNode);
```

Número de Folhas

int BinaryTree::Leaves();

- pré-condição: Árvore binária já tenha sido criada
- pós-condição: retorna o número de folhas existentes na árvore
- Novamente, o uso de recursão permite encontrar o número de folhas:
 - Caso base 1: uma árvore vazia possui zero folhas
 - Caso base 2: um nó cujas subárvores esquerda e direita são ambas vazias é uma folha
 - Caso recursivo: o número de folhas de uma árvore que contém um nó (não nulo) é determinado pelo número de folhas da subárvore esquerda deste nó somado ao número de folhas da subárvore direita deste nó

Número de Folhas

```
int BinaryTree::Leaves()
{ return Leaves(root);
int BinaryTree::Leaves(TreePointer &t)
{ if(t == NULL)
   return 0;
 else
   if(t->LeftNode == NULL && t->RightNode == NULL)
    return 1;
   else
    return Leaves(t->LeftNode) + Leaves(t->RightNode);
```

Altura

int BinaryTree::Height();

- pré-condição: Árvore binária já tenha sido criada
- pós-condição: retorna a altura da árvore
- □ A definição de altura de uma árvore nos leva ao seguintes casos
 - Caso base: a altura de uma árvore vazia é -1 (por definição a altura das folhas é 0; portanto parece natural adotar -1 como a altura de uma árvore vazia)
 - Caso recursivo: a altura de uma árvore que contém um nó (não nulo) é determinada como sendo a maior altura entre as subárvores esquerda e direita deste nó adicionado a um (uma unidade a mais de altura devido ao próprio nó)

Altura

```
int BinaryTree::Height()
{ return Height(root);
int BinaryTree::Height(TreePointer &t)
{ if(t == NULL)
   return -1;
 else
  int L,R;
   L = Height(t->LeftNode);
   R = Height(t->RightNode);
   if(L>R) return L+1; else return R+1;
```

Percurso em Pré-Ordem

- □ Para percorrer uma AB em pré-ordem, assumese que existe um procedimento (ou método) denominado
 - void process(TreeEntry x)
- ☐ que efetua algum tipo de processamento com o valor x passado como parâmetro, lembrando que TreeEntry é o tipo de dado que é colocado na AB
- □ Os demais percursos são similares e sua implementação fica como exercício

Percurso em Pré-Ordem

```
void BinaryTree::PreOrder()
{ PreOrder(root);
void BinaryTree::PreOrder(TreePointer &t)
  if(t != NULL)
                                                  Em situações
                                                  mais simples,
  { process(t->Entry);
                                                process pode ser
    PreOrder(t->LeftNode);
                                                 substituído por
    PreOrder(t->RightNode);
                                                 um comando de
                                                     escrita
```

Percurso em Pré-Ordem

```
void BinaryTree::PreOrder()
{ PreOrder(root);
void BinaryTree::PreOrder(TreePointer &t)
  if(t != NULL)
                                                  Em situações
                                                  mais simples,
  { cout << t->Entry << endl;
                                                process pode ser
    PreOrder(t->LeftNode);
                                                 substituído por
    PreOrder(t->RightNode);
                                                 um comando de
                                                    escrita
```

Impressão

- □A impressão de uma árvore binária pode ser efetuada utilizando algum dos percursos (pré-, in- ou pós-ordem) ou qualquer outra estratégia que for mais adequada
- □A implementação seguinte imprime com deslocamentos (espaços) uma AB

Impressão

```
void BinaryTree::Print()
{ BinaryTree::Print(root,0);
void BinarySearchTree::Print(TreePointer &t, int s)
{ int i;
 if(t != NULL)
 { Print(t->RightNode, s+3);
   for(i=1; i<=s; i++)
    cout << "; // espaços
   cout << setw(6) << t->Entry << endl;
  Print(t->LeftNode, s+3);
```

Considerações Finais

- Nesta apresentação foram vistos vários conceitos sobre árvores e árvores binárias, incluindo alguns algoritmos mais elementares
- ☐ Entretanto, imagine o processo de busca de informação em uma árvore (binária ou não)
 - Se as chaves não estão em uma ordem préestabelecida, toda a estrutura precisa ser percorrida para encontrar uma determinada chave (no pior caso), o que não seria eficiente
- □ Veremos na próxima apresentação uma forma de melhorar o tempo de busca, utilizando Árvores Binárias de Busca

Slides baseados em:

Horowitz, E. & Sahni, S.; Fundamentos de Estruturas de Dados, Editora Campus, 1984.

Wirth, N.; *Algoritmos e Estruturas de Dados*, Prentice/Hall do Brasil, 1989.

Material elaborado por José Augusto Baranauskas Elaboração inicial 2004; Revisão atual 2007