Instituto de Ciéncias Matematicas e de Computagao

ISSN - 0103-2569

Reviewing Some Machine Learning Concepts
and Methods

José Augusto Baranauskas
Maria Carolina Monard /ILTC

Ne 102

RELATORIOS TECNICOS DO ICMC

Sao Carlos
Fevereiro/2000

Reviewing Some Machine Learning Concepts
and Methods*

José Augusto Baranauskas
Maria Carolina Monard/ILTC

University of Sao Paulo
Institute of Mathematics and Computer Sciences
Department of Computer Science and Statistics
Laboratory of Computational Intelligence
P.O. Box 668, 13560-970 - Sao Carlos, SP, Brazil
e-mail: {jaugusto, mcmonard }@icmc.sc.usp.br

Abstract

Machine Learning — ML — is a field in Artificial Intelligence where an inductive
concept is learnt — a classifier — from given concept instances. One common
difficulty faced by beginners in ML refers to basic terms and concepts that are
assumed to be known. This work tries to minimize this difficulty, compiling into one
document many terms, concepts and methods that are generally spread out across
several ML bibliographies.

This work provides some definitions of learning, why to use ML as well as some
categorization of learning systems. Definitions accomplished by examples, formulas
and figures are given explaining some common terms used in ML. Since most learn-
ing systems use some kind of search, we also discuss some uninformed and informed
search strategies. Resampling techniques are also described involving holdout, ran-
dom, cross—validation, leave—one—out and bootstrap samples.

Another point considered is the bias variance decomposition of classifiers which may
explain, in certain way, the success of ensembles like bagging, boosting and arcing,
beyond others, also considered in this report.

Since in many applications it is also important that the concept description induced
by a ML algorithm can be interpreted by humans, descriptions that allow for hu-
man comprehensibility expressed in the form of decision trees and decision rules are
treated in some detail in this work.

Keywords: Supervised Learning, Resampling, Ensembles.

February 2000

*Work partially supported by National Research Councils — CAPES and FINEP, Brazil.

This document was produced with the IXIEX typeset system and the BIBIRX ref-
erence management system with help of the BIBVIEW tool (Prati et al., 1999). As
with all reviewing work, it almost certainly contains errors and has plenty of room
for improvements. Please report any error, typos, inconsistences, omissions and
suggestions for improvements to jaugusto@cmc.sc.usp.br.

This document and possible updates can be found at the ICMC site:

ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA /rel_tec/Rt_102.ps.zip

(© Copyright 2000 by José Augusto Baranauskas & Maria Carolina Monard
All Rights Reserved

Contents
1 Imntroduction

2 Supervised Machine Learning

2.1 Why Machine Learning? o
2.2 The Learning Hierarchy
2.3 Definitions
2.4 Description Languages o e e e
2.5 Searching e

2.5.1 Uninformed, Exhaustive or Blind Search

2.5.2 Informed or Heuristic Search
2.6 The Bias plus Variance Decomposition
2.7 Measure Estimation: Resamplingo 0oL,
2.8 Combining Predictors: Ensembles o000
2.9 Evaluating Predictors L oo

2.9.1 Calculating Mean and Standard Deviation using Resampling

2.9.2 Comparing Two Algorithms
2.10 Summary e

3 Top Down Induction of Decision Trees

3.1 Building a Decision Tree L o
3.2 Choosing the Best Feature to Splito .
3.3 Tree Pruning L
3.4 Classifying New Instances L o oo
3.5 Basic Algorithmo
3.6 An Example e
3.7 Geometric Interpretation

3.7.1 Feature-Value L

3.7.2 Linear Combination of Features
3.8 SUMMALY o o o e e e e e e

4 Rule Induction

4.1 Ordered Rule Induction o
4.1.1 Basic Algorithm
4.1.2 An Example
4.1.3 Classifying New Instances
4.1.4 Geometric Interpretation o

4.2 Unordered Rule Induction oo
4.2.1 Basic Algorithm
4.2.2 An Example
4.2.3 Classifying New Instanceso .
4.2.4 Geometric Interpretationo

4.3 Summary e e e e

5 Concluding Remarks

References

List of Figures

1

o~ O Ot

10
11
12

13
14
15
16
17

List

© 00 3 O O = Wi~

—_
= O

e e)
U= W N

The learning hierarchy: shaded nodes lead to supervised classification learning,
the topic of thiswork 4
The classifier toward the right provides a compact interpretation of the data . . . 4
Given the instances in (a), represented as points in the form (X, f(X)), (b), (c)
and (d) show possible consistent hypotheses h for approximating the real function
f which is unknown o oo 8
A classifier divides the description space into regions, each region labeled with a
class (a); the unlabeled instance ™*’ is classified according with the region where

it falls (b) 9
The relationship between predictor size and error 11
Hypothesis completeness and consistency 12
True positives, false positives and false negatives 15
An example of depth-first search in (a) breath-first search in (b). The numbers

inside each circle indicate the order in which states are visited 20
Number of folds versus percentage of shared training instances in cross-validation 24
A simple decision tree for diagnosing a patient o000 34
The relationship between tree size and errorrate 36
A larger tree is first grown that overfits the data and then pruned back to a

smaller (simpler) tree L 37
Building a DT from the voyage data (step 1) 39
Building a DT from the voyage data (step 2) 40
Pruning the DT from the voyage data 41
Non-overlapping regions are formed by decision tree in the description space . . . 42
Overlapping regions are generally formed by unordered rule induction in the

description space Lo 47

of Tables

Dataset in the feature-value or spreadsheet format 6
Rule coverage definitions L Lo 12
Association rule coverage definitions 13
Confusion matrix L 14
Confusion matrix for ideal classifiero oo 14
Two class classification performance 15
Description languages of some inducers L 0oL 19
Estimators Parameterso Lo Lo 23
The voyage data L e 38
Building a DT from the voyage data (step 1) 39
Building a DT from the voyage data (step 2) 40
Pruning the DT from the voyage data 41
The voyage data L 44
The voyage ordered rules 45
The voyage unordered rules L 0oL o 46

i

List of Algorithms

O~ O U W N~

Windowing e 26
Bagging 26
Boosting (AdaBoost. M1) 28
Boosting (with revisions suggested by Breiman) 29
Arcing (arc-x4) . . . L 30
TDIDTSs o 38
Ordered rule induction L 44
Unordered rule induction0 oo o 46

i

iv

1 Introduction

Imagination is more important than knowledge. Knowledge is limited
while imagination embraces the entire world.

—Albert Einstein, On Science

In this work we concentrate in inductive concept learning where a concept description, or clas-
sifier, is induced from given concept instances (data). In other words, a concept description
represents a generalization of given facts. We briefly introduce this sort of learning and ex-
plain the most important terms that are used in Machine Learning — ML — as well as some
description languages used to describe instances, hypotheses and background knowledge. Al-
though this work concentrates in classification tasks, most concepts also apply to regression or
non-symbolic problems as well.

Being an inductive process, the correctness of the concept description cannot be guaranteed.
Therefore, the concept description found should always have to be tested on new data. Several
resampling techniques — including holdout, random, cross—validation, leave—one—out and boot-
strap — that allow to estimate the true error of a predictor as well as a simple statistical test
to measure the significance of any difference between two classifiers are also described. Since
most learning systems use some kind of search, we also discuss some uninformed and informed
search strategies.

Furthermore, due to the fact that the induced descriptions can be incorrect, in many applications
it is also important that they can be interpreted by humans. Descriptions expressed in the
form of decision trees and decision rules, treated in some detail in this work, allow for human
comprehensibility.

This work is organized as follows. Section 2 gives some background on Machine Learning in-
cluding several introductory concepts, embracing some definitions of learning systems, common
terms, formulas and methods broadly used in this field, such as search strategies, resampling
estimators, combining predictors (ensembles) and a simple test for comparing two algorithms
using errors. Section 3 briefly describes induction of decision trees and Section 4 discuss the
rule induction process. Finally, concluding remarks are given in Section 5.

2 Supervised Machine Learning

The best way to learn about something is doing it.

—Maria Carolina Monard

This section describes the supervised classification learning problem and the terms used through-
out this work. Readers not familiar with Machine Learning concepts might wish to consult text
books on the subject, such as (Weiss and Kulikowski, 1991; Langley, 1996; Mitchell, 1998).

2.1 Why Machine Learning?

Humans are natural observers. We usually observe one process occurring in nature, or human
created, and we figure out how to understand it. Sometimes, we decide to measure some features
of such a process, hoping they could help us on comprehending it.

After gathering those features they are stored into five basic storage stages:

1. human mind recording;
2. manual recording in cards or paper media;

3. capturing data into computer flat files, including text files and spreadsheets, whose pri-
mary purpose is storing data in digital form;

4. Data Base Management System — DBMS — whose primary purpose is reliable storage
and fast data access;

5. data marting or data warehousing, whose main purpose is data storage for decision sup-
port.

Note that one could start in the first stage ending up in the last one, depending on the number
of features and instances being stored as well as the available technology.

Once stored in a digital form, the data is generally used in a limited way, usually querying
through some well-known application or report generating facility. While this traditional mode
of interaction is satisfactory for well-defined queries, it is not designed to support answers to
questions like:

e Is it possible to predict the behaviour of such process?

e How the data can be used to build classifiers of the underlying process which generated
it?

e How to understand better the data and use it to gain some sort of advantage or make the
process better?

These questions arrive naturally when the user does not know how to describe the goal in terms
of a traditional query. In this case, a more natural way of interacting with the data is to state
the Query By Example — QBE — typically more feasible because humans find natural to
interact at level of examples (or instances). Usually this is performed by labeling a training set
of instances of one class versus other classes and letting a ML system to build a classifier for
distinguishing classes.

After that, one can then apply the extracted classifier to search all data (not only the training
set) for situations of interest. As stated in (Breiman et al., 1984), data-derived classifications
can serve for two basic purposes:

1. to predict the class label corresponding to new measurements of features as accurately as
possible;
2. to understand the structural relationship between the class label and the measured fea-

tures.

The next section introduces some concepts about the learning hierarchy, providing a distinction
among learning systems.

2.2 The Learning Hierarchy

It is only the limitations of the human mind that make the possible,
impossible.

—Marc Drake

Simon (Simon, 1983) defined learning as:

“Learning denotes changes in the system that are adaptive in the sense that they
enable the system to do the same task or tasks drawn from the same population
more efficiently and more effectively the next time.”

Weiss (Weiss and Kulikowski, 1991) defined learning as:

“A learning system is a computer program that makes decisions based on the accu-
mulated experience contained in successfully solved cases.”

Inductive learning is accomplished by reasoning from externally supplied instances. In super-
vised learning, also known as pattern recognition or discrimination, the inducer is supplied with
a set of training instances for which the true class labels are known. Each instance is described
typically by a vector of feature values and a class label. The task of the induction algorithm
is to learn a classifier that correctly classifies new unlabeled instances i.e., without class label.
For discrete class labels the problem is known as classification and for continuous class labels as
regression. On the other hand, in unsupervised learning the classes are inferred from the data.
Figure 1 shows the learning hierarchy just described where shaded nodes lead to supervised
classification learning, the topic of this work.

Figure 2 shows an example of a classification process. As can be seen, background knowledge
about the domain may be used when choosing the data or providing some information already
known as input to the ML inducer. After induced, the classifier is usually evaluated and
the classification process may be repeated if necessary. One important issue to consider is
that classifiers should provide a more compact description of the concept embedded on the
underlying data. In other words, if we have n instances then it is expected that the induced
classifier should provide a description length less than n (or the data would describe itself better
than that classifier!). For example, a decision tree induced from 7 instances should have less
than n leaf nodes.

Another important requirement is that ML should be able to deal with imperfect data. In
general, instances contain a certain amount of errors in their description or some features may
have missing values.

Learning systems usually are classified into two major categories (Kubat et al., 1998a):

e black-bor systems which develop their own concept representation i.e., their internal rep-
resentation cannot be easily interpreted by humans and provides neither insight nor ex-
planation of the recognition process;

o knowledge-oriented systems which aim at creating symbolic structures that are human

comprehensible (Michalski, 1983).

Inductive
Learning

Supervised
Learning

Unsupervised
Learning

Classification Regression

Figure 1: The learning hierarchy: shaded nodes lead to supervised classification learning, the
topic of this work

.

.
Background Background
Knowledge Knowledge
Independent Variables Dependent
Variable
X1 X2 X3 Xa Y
sunny 25 72 yes go
f sunny 28 91 yes dont_go L %
sunny 22 70 no go Classifier
sunny 23 95 no dont_go
- sunny 30 85 no dont_go
Problem overcast | 23 90 yes go Machine
] Specification overcast | 29 8 no 90 Learnin
Data P overcast | 19 65 yes go 9
overcast | 26 75 no go
overcast | 20 87 yes dont_go
A rain 22 95 no go
rain 19 70 yes dont_go
rain 23 80 yes dont_go
rain 25 81 no go
rain 21 80 no go
LS
Evaluation

Figure 2: The classifier toward the right provides a compact interpretation of the data

A distinction between these two categories has been formulated in (Michie, 1988) in terms of
three criteria:

e weak criterion: the system uses data to generate an updated basis for improved perfor-
mance on subsequent data. Neural Networks and Statistical methods satisfy this criterion;

e strong criterion: the weak criterion is satisfied. Besides that, the system is able to com-
municate its internal representation in explicit symbolic form;

e ultra-strong criterion: weak and strong criteria are satisfied. Moreover, the system is able
to communicate its internal representation in explicit symbolic form that can be used by
a human without being aided by computer i.e., using only the human mind.

In this work we shall concentrate in learning by symbolic supervised classification. The term
symbolic indicates that classifiers should be human readable and comprehensible. The term
supervised suggests that some process, sometimes called the teacher, has previously classified
the instances in the training set. Finally, as explained before, the term classification denotes
the fact that the class label is discrete i.e., it consists of a few unordered values.

Next, some terms broadly used through this work are defined.

2.3 Definitions

All things good to know are difficult to learn.

Greek Proverb

Inducer Informally, the task of an inducer (or a learning program) is to generate a good classi-
fier from a set of classified instances. The classifier can then be used to classify unlabeled
instances with the goal of correctly predicting the label of each unlabeled instance. Then,
the classifier can be evaluated for accuracy (Salzberg, 1995; Dietterich, 1997b), comprehen-
sibility (Freitas, 1998b; Horst, 1999), learning speed, storage requirements, compactness
and any other desirable property that determines how good and appropriate it is for the
task at hand (Michie et al., 1994). For generality, we define a predictor as a classifier for
classification or regression problems.

Instance An instance (also described as an example, case or record in the literature), is a fixed
list of features values (or a vector of feature values). An instance describes the basic entity
that we are dealing with, such as a patient, a DNA sequence or a medical data about some
disease.

Feature A feature (sometimes called an attribute or field) describes some characteristic or
aspect of an instance. Normally, there are two features type: nominal (e.g., color: red,
green, blue) and continuous (e.g., weight € R, a real number). Continuous features are
used whenever there is a linear ordering on the values, even if they are not truly continuous
(e.g., weight may be specified to the nearest integer kilogram).

For any sort of features, usually there is also an important value that means unknown
for most inducers. This special value is very different of, for instance, zero-values (for

numbers) or empty strings. In most of the well known inducers this value is represented
as a question mark (7).

Also, several inducers assume that the original features describing instances are relevant
enough to learn the task at hand. However, some of the features may not be directly
relevant and other features may be irrelevant. A feature is irrelevant if there is a complete
and a consistent description (see definition below) of the classes to be learned that does
not use that feature (Michalski and Kaufman, 1998). Thus, a nonessential feature may
be either relevant or irrelevant but it can be dispensable when learning takes place (Lee,
2000).

One important issue to be considered is choosing features with predictive capability. No
matter what learning method is employed, the concepts which can be learned are at the
mercy of the data and the quality of the features (Weiss and Kulikowski, 1991). For
example, one could chose features with low predictive power, such as (hair color, eyes
color, car model, number of children) or features with higher predictive power, such as
(temperature, skin resistance, lung examination). For this specific learn task, in the second
case, better predictions based on new unlabeled instances probably will occur than in the
former case .

Class In supervised learning every instance has a special feature, the label (also called output
or class), which describes the phenomenon of interest i.e., the task we would like to learn
and make predictions about. An unlabeled instance is the part of the instance without
the label i.e., the list of feature values. The class label values are typically drawn from a
discrete (nominal) set, of classes {C1,C, ... ,Ck} in the case of classification or from the
real values in the case of regression.

Dataset A dataset is a set of classified (labeled) instances. Table 1 shows the general format of
a dataset 1" with n instances and m features. In this table a row 7 refers to the i-th instance
(¢t =1,2,...,n) and column entries x;; refer to the value of the j-th (j = 1,2,...,m)
feature X of instance i.

Xl XQ e Xm Y
T | z11 712 0 Tim | W1
To | o1 x22 -+ Tom | Y2
Th | Tn1 ZTn2 ces Inm | YUn

Table 1: Dataset in the feature-value or spreadsheet format

As can be seen, instances are tuples 13 = (1, %2, ... , Tim, Yi) = (X4, ¥i) also referred
as (X, class(X)) or (X,Y) where the last column, Y, is what we try to predict given
the other X features i.e., Y = f(X). Observe that each X is an element of the set
X1 x Xo x...x X,, where X; is the domain of the j-th feature and Y belongs to one of
the k classes i.e., Y € {C1,Cy, ..., Cy}.

Usually, a dataset is split into two disjunct sets: the training set which is used to learn the
concept and the test set used to measure the effectiveness of the learned concept. They
are normally disjunct to ensure that measures using the test set are from an independent
set yvielding a statistically valid measurement.

Note that, after inducing a classifier, it is possible to evaluate this classifier in the training
set as well as in the test set. It is usual to call measurements using the performance of

the classifier in the training set as apparent (also know as resubstitution) measure and in
the test set as true measure (like, for example, apparent error and true error). For most
type of predictors, the apparent measure is a poor estimator of future performance, since
it tends to be biased optimistically.

Noise It is common, in the real world, to work with imperfect data. Imperfect data could
be derived from the process which generates the data itself, the data acquisition process,
the data transformation process or even incorrectly labeled classes (for example, instances
with the same feature value but different class labels). In this case, we say there is noise
in the data. Also, features that are not more predictive than chance to the learning task
can be considered noise (Weiss and Kulikowski, 1991, Chapter 1).

Data Preparation Usually, there are several steps preceding the learning step. For example a
cleaning step can be used to improve the quality of data by modifying its form or content,
such as removing or correcting data values that are incorrect. If this step is not initially
applied to the data, the learning process may indicate that further cleaning is desired for
improving the quality of the extracted knowledge.

After cleaning, it may be still necessary to transform the data before passing it trough
an inducer. This may require smoothing feature values or even data transformations in
order to meet the requirements imposed by specific inducers.

Also, if there is a lot of nonessential features in the initial set of instances, the complexity
of the learning process may increase significantly. In this case, data reduction techniques
can be used. One possible approach is to use Feature Subset Selection — FSS — methods
to determine the most relevant features for a given inducer (Kira and Rendell, 1992; John
et al., 1994; Blum and Langley, 1997) . In (Baranauskas and Monard, 1998b; Baranauskas
and Monard, 1998a; Baranauskas et al., 1999a; Baranauskas et al., 1999b; Baranauskas
and Monard, 1999; Lee et al., 1999) we report some experimental results using F'SS by
filtering and wrapping inducers around (Kohavi and Sommerfield, 1995; Kohavi, 1997).
Refer to (Weiss and Indurkhya, 1998) for a good review of data preparation techniques.

Background Knowledge In general Background Knowledge — BK — includes information
about valid feature values, a preference criterion for choosing among possible features or
even hypotheses. BK may also include relationship constraints between features, rules for
generating high level concepts, new features possibly derived from the original ones, as
well as some initial hypothesis. Not all inducers are able to use BK when learning concepts
i.e., they use only the data. Observe that the number of hidden units and weights as well
as topology in a neural net is a sort of background knowledge provided by the user.

Classifier Given a set of training instances, the inducer outputs a classifier (also called a
hypothesis or a concept description) such that, given a new instance, it accurately predicts
its label Y. All classifiers use stored data structures that are then interpreted as a mapping
for an unclassified instance to a label.

Formally, in supervised classification an instance is a pair (X, f(X)) where X is the input
and f(X) is the output. The task of an inducer is, given a set of instances, to induce a
function h that approximates f. In this case, h is called an hypothesis over f.

Figure 3 shows an example of this concept (Russel and Norvig, 1994). Suppose we have
as instances points in the plane shown as circles in (a), where the task is to find a function
h(X) that fits the points well. A possible approximation for the real function f could be
to connect each instance with the next through straight lines (b). Of course, this could be

o © (a) (b)
>

(c) (d)
>

>

Figure 3: Given the instances in (a), represented as points in the form (X, f(X)), (b), (¢)
and (d) show possible consistent hypotheses h for approximating the real function f which is

unknown

Bias

a over simplified approximation for function f. So, we could approximate f by a smooth
polynomial function, as can be seen in (¢). However, this hypothesis could be considered
too complicated by the final user. Hence, a more simple hypothesis could be induced as
shown in (d), which completely ignores one instance i.e., treating outliers as noise.

Still considering Figure 3, as the real function f is actually unknown there are many
possible choices for h, but without extra knowledge, we have no way to choose between
hypotheses (b), (c¢) or (d). Any preference for one hypothesis over another, besides simple
consistency with the instances, is called a bias (Russel and Norvig, 1994). Because there
are almost always a large number of possible consistent hypotheses all inducers exhibit
some sort of bias. Indeed, learning without bias is impossible. Therefore, an unbiased
predictor means that the predictor will, over a long run, average to the true error.

Variance Besides bias, another important factor to be aware of is the variance of the classifier,

which measures how much the learning algorithm’s guess fluctuates for different training
sets of the given size (how often they disagree). See Section 2.6, page 21, for more details.

Description Space It can be observed that m features can be interpreted as a vector, each

feature corresponding to a coordinate in a m-dimensional space (or description space).
Also, each point in the space can be labeled with its corresponding associated class.

From this point of view, a classifier divides this space into regions, each region labeled with
a class. An unseen instance is classified by determining the region where the corresponding
labeled point falls into and assigning the class associated with that region.

Figure 4 shows an example for two classes {o, +} and two features {X1, X2}. Suppose
in (a) the extracted classifier, in symbolic form, is given by ‘if X1 <5 and X2 < 8 then
class o else class +’. This classifier divides the description space into a two regions: the
inside of the rectangle where X1 < 5 and X2 < 8 (considering positive values for both

X2

x21
+ +
... § frrererr sy
0 0
0 0 0 + + 0 0 0 + +
0 0
0 0 0 0 + 0 0 0 0 +
0 0 A 0 0
0 0 0 + + 0 0 0 + +
0 + + 0 + +
0 0 0 0 0 0
0 + + (a) 0 + + (b)
5 X1 25 5 X1

Figure 4: A classifier divides the description space into regions, each region labeled with a class

(a); the unlabeled instance

*7 is classified according with the region where it falls (b)

features) and outside it. Now, in (b) a new unlabeled instance ‘*’ with (X1, X2) = (2.5, 4)
will be classified as class o since it falls inside the region which defines that class.

Stability Some inducers are unstable in the sense that small perturbations in the training

set or in its construction may result in large changes in the extracted predictor. For
instance, feature subset selection in regression, decision trees in regression or classification

and neural nets are all unstable; nearest neighbors and linear discriminant analysis are
stable (Breiman, 1996d).

Unstable predictors are characterized by high variance: as the training set changes, ex-
tracted predictors can differ considerably from each other. Stable predictors, on the other
hand, do not change much over small changes in the training set. There is a trade-off
between bias and variance: unstable predictors usually have high variance but they can
have low bias. Stable predictors have low variance, but they can have high bias.

Error and Accuracy A very common measure used is the error rate of a classifier h, also

know as misclassification rate denoted by ce(h) in classification problems. Usually the
error rate is obtained using Equation 1 which compares each labeled instance with the
predicted classifier label. The || E || operator returns 1 if E is true and zero otherwise and
n is the number of instances. The error rate complement, the classifier accuracy, denoted
by ca(h) is given by Equation 2.

ce(h) = =3 || i # () | 1)
=1

ca(h) = 1 - ce(f) (2)

For regression problems, the predictor error (pe) can be estimated calculating the distance
between the true value against the predicted one. Usually, two measures are commonly
used: the mean squared error (mse) and the mean absolute distance (mad), given by
Equations 3 and 4, respectively.

n

pemse(h) =+ (31 — (o)) (3)
T i=1

pe-mad(h) = + 3" [y — h(a)| (1)
Ti=1

Under- and Overfitting When extracting an hypothesis from data, it is possible the predic-
tor to be very specific for the training set. As the training set is only a sample of all
possible instances, it is possible to generate predictors that improve performance on this
training set while decreasing performance on other instances outside this training set. In
this situation the error (or other measure) on an independent test set yields to a poor
performance predictor (Weiss and Indurkhya, 1998). In this case we say that the predictor
overfits the training set.

For example, the best classifier is the Bayes classifier which is equivalent to a direct table
lookup for instances in the training set. This table lookup classifier have zero apparent
error rate since testing the original data makes no mistakes (assuming instances with same
feature values belonging to the same class i.e., noise-free instances). But when using new
data it will be extremely difficult to obtain zero error due to the enormous number of
possible combinations.

On the other hand, it is also possible that few representative instances are given to the
learning system (for example, decision trees or rule induction algorithms) or the user
pre-defines the classifier size too small (for example, insufficient neurons and weights
are defined in a neural net or a high pruning factor is defined for a decision tree) or
a combination of both. Therefore, it is also possible to generate predictors that poorly
improve performance on the training set as well as on a test set. In this case, the predictor
underfits the training set.

Figure 5 illustrates the impact of under- and overfitting. The horizontal axis of this figure
indicates the complexity (size) of the predictor (i.e. number of nodes in a decision tree,
number of rules in rule induction or number of neurons or weights in a neural net). The
vertical axis indicates the error of predictions made by the predictor. The dotted line
shows the error of the predictor over the training set whereas the solid line shows error
measured over the test set which is not included in the training set. As expected, the
error over the training set (apparent error) decreases monotonically as the predictor is
built. However, the error measured over the test set (true error) first decreases up to N2
then increases.

Having this in mind, which hypothesis should be better? The Ockham’s razor (Kearns
and Vazirani, 1994) principle gives a clue. It states that the most likely hypothesis is the
simplest one that is consistent with all observations. In fact, this means that, other things
being equal, a simple hypothesis that is consistent with the instances is more likely to be
correct than a complex one.

Overtuning Overtuning may occur when an algorithm developer tunes a learning algorithm,
or its parameter settings, too well in order to optimize its performance on all the available
data. This may be a harmful technique whenever all available data is used for algorithm
development and tuning. Like overfitting, overtuning can be detected and avoided by

10

A
Error

Test set

N1 NZ N3
Predictor Size

Figure 5: The relationship between predictor size and error

using only part of the data for algorithm development and using the remainder of the
data for final system testing. Of course, as ordinary overfitting, if the data is not held out
for final evaluation, the observed performance of the system cannot be confidently used
as an estimate of the expected performance of the system.

Pruning Pruning is a standard way of dealing with noise and overfitting in decision trees or
rule learning. The common idea is to deal with the problem of overfitting by learning
an overly general hypothesis from the training set in order to improve the prediction on
unseen instances. There are, basically, two different approaches to pruning:

1. pre-pruning which means that during the hypothesis generation some training in-
stances are deliberately ignored in order that the final hypothesis does not classify
all training instances correctly;

2. pros-pruning which means that first the hypothesis that perfectly explains all training
instances is generated. After that, the hypothesis is generalized by eliminating some
parts like cutting off branches of decision trees or some conditions in rule induction.

Completeness and Consistency Once induced, an hypothesis can be evaluated about its
completeness, if it classifies all instances and consistency, if it correctly classifies the in-
stances. So, given an hypothesis, it can be considered: (a) complete and consistent; (b)
incomplete and consistent; (c¢) complete and inconsistent or (d) incomplete and inconsis-
tent. Figure 6 shows an example of these four cases considering two features X; and Xy,
three class labels (o, +, *) and the induced hypothesis for each class. They are represented
by two solid line regions for class o, two dotted line regions for class + and one dashed
line region for class *.

Complex A <complex>> is a disjunction of conjunctions of feature tests in the form:
X; op Value

where X is a feature, op is an operator in the set {=,#, <, <,>,>} and Value is a valid
feature X; constant value.

11

— — — 'Y — — —
X2 * * X2 * *
) o o r N * *I 0 I} o) I_ * * *I
(o] o 0 * (o] I} 0 *
) of |+ o *) I 1
0 o o : 0 5 o .
o] H + : o] +
0 o of +i 0 oo +
e + + +
: +i +:
o . : . o R SR .
o + . o : + .
+ : +
(o] + + 0 R +
+ H +
o |ihi Frvennnls Frrroonnss (a) o it Frveenads Frrmmssosss (b)
I I M aasnnnnnnnany N I e unnnnnnnnny
X1 X1
X2 T T w «| x2f T T w «|
0 * 0 *
0 0 o o 0 * * 0 0 o o 0o * *
0 lo e o] 0 | o, sx o]
- ~ o | am e, - ~ ol —wm.rm e .
0 + 0 +
0 o |io + 0 oo +
+ + + +
- + + -,
o S S L o e S .
0 + . 0 : + .
(0] + + + (0] + + +
+ H +
0 |ifiiinnns Fdissssirrrnnasstennnn (C) o it Frrein Eovrrrensd " (d)
X1 X1

Figure 6: Hypothesis completeness and consistency

It is also possible to have a linear combination of features (for continuous features) in the
form:

1 X X14+cox Xo+...4+cm X Xy op Value

where ¢; is a constant, X; is a continuous (integer or real) feature, op is an operator in
the set {<, <,>,>} and Value is a constant value.

Rule A rule assumes the form
if <complex> then <class = C;>

where C; belongs to the set of possible k class values {C1,Co, ... ,Ck}. The <complex>
part is also denominated rule conditions and <class = C;> is denominated rule conclusion.
Learned rules are usually consistent and complete with regard to the training data.

Instances that satisfy the <complex> part of the rule composes its covered set or, in other
words, those instances are covered by the rule. Instances that satisfy both the <complex>
and the conclusion <class = C;> are positively covered by the rule. On the other hand,
instances satisfying the <complex> but with <class # C;> are called negatively covered,
as shown in Table 2.

Instances satisfyving ... Are ..

<complex> covered by rule
<complex> and <class = C;> | positively covered by rule
<complex> and <class # C;> | negatively covered by rule

Table 2: Rule coverage definitions

12

Association Rule Association learning systems find conjunctive implication rules of the form:
if <complex;> then <complexs>

where there are no common features among them, i.e. <complex;> N <complexs> = ().
As can be noted, there is no explicit class definition in this case and any feature can be
used as part of rule conclusions. For instance:

if X3 and X5 then X1 and XQ

Observe that an association rule is a generalization of a conventional rule defined previ-
ously. Thus, criteria used to evaluate association rules can be used to evaluate conventional
rules as well. Conventional association systems find association rules that satisfy some
minimum criteria (Agrawal et al.; 1993; Agrawal and Srikant, 1994; Klemettinen et al.,
1994; Bayardo and Agrawal, 1999). Therefore, it is easy to extend rule coverage definitions
shown in Table 2 to association rules as Table 3 shows.

Instances satisfyving ... Are ...

<complexq> covered by rule
<complex;> and <complexy> positively covered by rule
<complex; > and not <complexy> | negatively covered by rule

Table 3: Association rule coverage definitions

Two widely used criteria for rule evaluation are support and confidence. Let us denote
n as the total number of training instances, n; as the number of instances satisfying
<complex;> and ni19 as the number of instances that satisfy both <complex;> and
<complexs>. Thus, Equations 5 and 6 define support and confidence, respectively.

Support _Ie (5)
n

Confidence =2 (6)
n1

Confusion Matrix A confusion matrix offers a effectiveness measure of the classification
model i.e., the induced hypothesis n, by showing the number of correct classifications
against predicted classifications for each class. Results are summarized in two dimen-
sions, namely true classes and predicted classes as shown in Table 4 for k different classes
{C1,Cs,...,C}. Each element M(Cj,Cj) of this matrix indicates the number of in-
stances that actually belongs to the true class C; but were predicted as being class C; as
shown in Equation 7 where 1" represents the dataset. As defined before the || £ || operator
returns 1 if is true and zero otherwise.

M(Ci,Cj) = > |) = Cj || (7)
{V(zy) €T y=Ci}

13

Class Label | predicted €7 predicted Cy -+ predicted Cy
true Cl]\/I(Cl,(]l)]W'(Cl,CQ) s]\/[(Cl,(jk)
true Cy]\](CQ C‘l)]\J(CQ, 02) I]\](CQ Cvk)
true C}, M(Ck,(/'l)]W(CmCz) J\/[(Ck,(]k)

Table 4: Confusion matrix

The number of correct predictions for each class falls along the main diagonal M (C;, C;)
of the matrix . All other elements M(C;, C;), for i # j are the number of errors for a
particular type of misclassification error.

Of course, the ideal classifier would have all these entries equal to zero since it makes no
mistakes, as Table 5 shows.

Class Label | predicted €7 predicted Cy --- predicted Cy
true C} M(Ch,Ch) 0 BN 0
true Cy 0 M(Cs, Cy) . 0
true Cy 0 0 - M(Ck,Ck)

Table 5: Confusion matrix for ideal classifier

Given a rule, an instance and a class, there are four possible cases that might occur:

1. the instance satisfies the <complex> (all conditions) of the rule and its class is the
same as the one predicted by the <class = C;> conclusion.

2. the instance satisfies the <complex> (all conditions) of the rule and its class is not
the same as the one predicted by the <class = C;> conclusion.

3. the instance does not satisfy the <complex> (all conditions) of the rule and its
class is the same as the one predicted by the <class = C;> conclusion.

4. the instance does not satisfy the <complex> (all conditions) of the rule and its
class is not the same as the one predicted by the <class = ;> conclusion.

The error rate ce(h) and its complement accuracy ca(h) — defined in Equations 1 and 2,
respectively in page 9 — are two of the more widely used metrics for evaluating perfor-
mance of learning systems. For simplicity let us consider a two-class classification problem.
With just two classes, usually labeled as “4+” and “—”, the choices are structured to predict
the occurrence or non-occurrence of a single event or hypothesis. When just two classes
are considered, the two possible errors are denominated false positive and false negative.
Table 6 illustrates the confusion matrix for two-class classification problem where Tp is
the number of correctly classified positive examples and F)y is the number of misclassified
positive instances from a total of n = (Tp + Fy + Fp + Tx) instances.

Still considering Table 6, note that four situations may occur, illustrated in Figure 7 for
<class = O} >.

1. the instance belongs to class C; and is predicted by the classifier as class Cy. In
this case, we say this instance is a true positive.

2. the instance belongs to class C_ and is predicted by the classifier as class C_. In
this case, we say this instance is a true negative.

14

Class labcl

predicted Oy

predicted C_

Class crror rate

Total crror rate

True positives

False negative

true Ct Tp Fy]}E_—NFN
Fp+Fy
“, . . 7’]’
False positives True negatives
true C'_ Fp TN Fpp—;——PTN
Table 6: Two class classification performance
Predicted Class True Class

X21 el L S

False Positives

True Positives

False Negatives

X1

Figure 7: True positives, false positives and false negatives

3. the instance belongs to class C_ and is predicted by the classifier as class C. In
this case, we say this instance is a false positive.

4. the instance belongs to class C and is predicted by the classifier as class C_. In
this case, we say this instance is a false negative.

Other frequency ratios derived from the numbers in Table 6 can be computed as illustrated
in Equations 8 to 12 (Weiss and Kulikowski, 1991).

True C'; Rate or Sensitivity or Recall =

Cy Predictive Value =

C_ Predictive Value =

15

Tp
Tp+ Fp

Tn
T + Fyn

ITp
Tp + Fy

e TN
True C_ Rat Specificity = ————— 11
rue ate or Specificity Frt T (11)

Tp+ T
Accuracy = ptIN (12)
n

For example, high sensitivity (or low error rate in C) indicates the ability to correctly
classify positive instances. However, the specificity may be poor if many positive instances
are incorrectly classified as negative.

Error Costs Properly measuring the performance of classifiers, through error (or accuracy)
rate, plays an important role in Machine Learning, since the goal is building classifiers
with low error rate on unseen instances (Batista, 1997; Batista and Monard, 1998). Still,
considering the two-class situation, if the cost of having false positive error and false
negative error is not the same, then other performance measures should be used. A
natural alternative is to use misclassification cost which is a penalty number assigned for
making a mistake. In this case errors are converted into costs by multiplying an error by
its misclassification cost. Thus, instead of designing a classifier to minimize error rates,
the goal would be to minimize misclassification costs.

Class Prevalence Another fairly common issue is the imbalance of the dataset’s class preva-
lence. For example, suppose a dataset with class distribution — the proportion of instances
in each class — (C1,Cs, C3) = (99.00%,0.25%,0.75%). A simple classifier that predicts
always the majority class C7; would have an accuracy of 99.00%. This can be undesir-
able when minority classes are those which hold very important information, for example,
predicting C7: normal patients, Co: patient has disease A and C3: patient has disease B.

It is important to be aware, when working with imbalanced datasets, that is desirable to
use a performance measure other than accuracy (Kubat et al., 1998b). This is due to the
fact that most learning systems are designed to optimize accuracy, behaving poorly if the
training set is highly imbalanced. The induced classifiers tend to be highly accurate on the
majority class instances but usually misclassify many of minority class instances. Some
approaches have been developed to deal with this issue like a mechanism that removes re-
dundant or harmful instances or a method to detect borderline and noisy instances (Kubat
and Matwin, 1997; Kubat et al., 1997; Batista et al., 2000).

Learning Mode Whenever all instances should be present for learning, the learning mode is
non—incremental also known as batch mode. On the other hand if the inducer does not
have to start from scratch when new instances are added to the training set the mode is
incremental. Therefore, in the incremental mode the inducer just try to update its old
hypothesis whenever new instances are added to the training set.

In general, non—incremental learning should give better results since the inducer is allowed
to look at all training instances at once. However, if computational time is an important
issue and new instances are frequently added to the training set, non—incremental learning
could save time.

16

2.4 Description Languages

When solving problems using computers, it is important to define how to translate the problem
into computational terms. Specifically, in ML this means how to represent instances, hypothesis
and the background knowledge. To describe them, the following description languages are used:

¢ Instance Description Language — IDL;
e Hypothesis Description Language — HDL;

e Background Knowledge Description Language — BDL

We outline some description languages most frequently used in learning in ascending order
of their complexity and expressive power. We provide just intuitional explanations of these
languages, avoiding unnecessary mathematical complexity. Since a description language can
represent instances, hypotheses or background knowledge within this section we refer to them
simply as an object.

Zero Order or Propositional Calculus In propositional calculus the object to be repre-
sented is described by conjunctions, disjunctions and negations of boolean constants that
stand for individual features. For example:

female A grown_up — can_have_children

This language has low descriptive power, being not able of describing objects where rela-
tions are involved.

Attributional Logic In order to represent instances and concepts many of the existing propo-
sitional inductive learning algorithms use a feature-based (also called attribute-based) lan-
guage. Formally, attributional logic is equivalent to propositional calculus but employes
a more powerful and flexible notation. The improvement is that the features are treated
as variables that can take on various values. For instance:

sex=female A age=grown_up — class=can_have_children
or equivalently,
sex(female) A age(grown_up) — class(can_have_children)

Although most inducers use attributional logic for describing instances and concepts,
the strong constraint of this language still prevents representing structured objects as
well as relations among objects or among its components. Thus, relevant aspects of the
training instances, which somehow could characterize the concept being learned, cannot
be represented.

First Order Logic In order to overcome the representational limitations imposed by an at-
tributional language, learning in representations that are more powerful, such as some
variants of first order logic has received more attention. First order logic provides a frame-
work for describing and reasoning about objects and predicates that specifies properties or
relationships among objects.

An important subset of first order logic is Horn clauses. A Horn clause consists of a head
with just one predicate and a body with zero, one or more predicates. For example:

17

brother(X,Y") :— male(X), parent(X,Z), parent(Y,Z)

This example says that a person X is brother of person Y if X is male and both X and Y
have the same parent Z. The part to the left from the token :— is the head and the part
to the right from the token is the body of the clause. The token :— is equivalent to the
logical implication « and is called neck!. The commas separating each predicate stand for
logical conjunctions. Also, all variables are always universally quantified. Variables inside
parentheses are called arguments and the number of arguments is the predicate arity.

Observe that if all predicates have arity zero, the language reduces into zero order logic
and if all predicates have arity one and all arguments are constants (no variables are
involved), the language reduces into attributional logic.

Sets of first order Horn clauses can be interpreted as programs in the logic programming
language Prolog (Bratko, 1990; Sterling and Shapiro, 1994). For this reason, inductive
learning of first order rules is often called Inductive Logic Programming — ILP (Flach,

1994; Muggleton and Raedt, 1994; Caulkins, 1999).

Second Order Logic The second order logic is an extension of the first order logic, allowing
the predicate names themselves to be considered as variables. For example, suppose the
schema:

Pi(X,)Y) :— Py(X), P3(X,Z), Pu(Y, Z)
where Py, Py, P3, P, are predicates. A possible instantiation could be
brother(X,Y") :— male(X), parent(X,Z), parent(Y,7)

Consequently, the schema remains untouched and only the predicate names can vary.
Observe that this representational language is so rich and flexible that its use for is com-
putationally infeasible. Sometimes, a common practice is to introduce constraints such
as limiting the number of predicates in the clause, excluding recursive definitions or even
limiting the number of predicate arguments (Morik et al., 1993).

Math Functions Math functions can be used to describe the hypotheses, specially for neural
nets. In this case, the description space is divided into complex regions trough combina-
tions of several math functions.

Table 7 shows the representational languages of some symbolic and non-symbolic inducers.
Included in this table are decision tree systems such as CART (Breiman et al., 1984), and
C4.5 (Quinlan, 1988) as well as rule induction systems like CN'2 (Clark and Niblett, 1987; Clark
and Niblett, 1989; Clark and Boswell, 1991), FOIL (Quinlan, 1990) and Ripper (Cohen, 1995).
At last, one non-symbolic system, neural nets, is considered. Observe that only Ripper and
FOIL are able to process background knowledge.

Yg:—p=qep=p—yq

18

Inducer IDL HDL BDL
C4.5 attributional attributional
CART attributional attributional
CN2 attributional attributional
Ripper attributional attributional attributional
FOIL attributional first order first order
Neural Net | attributional math functions

Table 7: Description languages of some inducers

2.5 Searching

Now this is not the end. It is not even the beginning of the end. But
it is, perhaps, the end of the beginning.

— Winston Churchill

When looking for good hypotheses an inducer can use several search strategies. A search
process then explores states or modes in the inducer’s representational language description
space according with:

Initial State The initial state is the starting point of the search.

Search Operators The search operators compose the set of possible actions that can be taken
when searching. When one operator is applied to a state (or a set of states), the result is
the set of states that can be reached by carrying out the actions in a particular case.

Termination Criterion The termination criterion, or goal test, is applied to a single state
description to determine if it is the goal state.

Search Strategy The search strategy defines under what conditions and to which state an
operator is to be applied.

Evaluation Function The evaluation function, used only in informed search, returns a num-
ber the describes the desirability of expanding a state.

Uninformed and informed search techniques are widely used in Machine Learning. Both are
briefly described in the following two sections.

2.5.1 Uninformed, Exhaustive or Blind Search

In the uninformed search strategy the only information available is how to distinguish a goal
state from a non goal state. Two fundamental strategies of uninformed search are following

described.

Depth-first Given the initial state Sy, in the depth-first search an operator Q1 from the set
{01,09,...} is applied to it arriving at a new state Sy. If Sy is not the goal state then
operator O is applied again to So, thus arriving at a new state S3 and so on. If there are
no more states to be reached from state S3 then the search backtracks, returning to the

19

previous state So and tries to apply another operator from the set {O2, 03, ... }. If again
it is not possible to reach any state from the present state the search backtracks further
until a state that allows the application of some operator is found. If no such state can be
found, the search terminates. Figure 8(a) shows the order in which the nodes are visited
using depth-first search.

The depth-first search is neither optimal since it does not always find the highest quality
solutions among several solutions nor complete because the strategy is not guaranteed to
find a solution when there really is one. However, depth-first search has very modest
memory requirements, since it needs to store only a single path from the initial state to
the current state along with the remaining unexpanded sibling nodes for each on the path.
Assuming b operators and d expansions — also called search level — performed so far,
depth-first search requires O(b%) computer time but only O(bd) of memory.

Figure 8 An example of depth-first search in (a) breath-first search in (b). The numbers inside
each circle indicate the order in which states are visited

Breadth-first On the other hand, in the breadth-first search starting at the initial state S all
operators {O1,0s, ...} are applied to it, arriving at new states {Ss, S3,...}. Then, each
resulting state is tested using the termination criterion. If the termination test succeeds
in some of them, the search terminates. Differently than depth-first, observe that breath-
first search does not use backtracking. Figure 8(b) shows the order in which the nodes
are visited using breadth-first search.

Contrary to depth-first search, breath-first search is optimal and complete. However,
observe that at each state S5; all b operators are applied, thus given b new states. If the
goal state is not reached, then b? new states are generated applying b operators to each
one of the b previous states and so on.

Therefore, the number of states tested before finding a solution is 1 4+ b + b% + ... + b<,
which includes the test in the initial state and d is the number of expansions performed
so far. This is the maximum number i.e., the worst case but note that the solution at

20

level d can be found at any point thus given, in the best case, a smaller number of states
to be tested.

Two major problems about breath-first search is time and memory requirements both
reaching O(b?), since all states must be maintained in memory at the same time. Consid-
ering b = 10 operators, d = 10 levels, and a computer able to process 1000 states/second,
each state requiring 100 bytes of memory then 128 days and 1 Terabyte would be neces-
sary for breath-first search to terminate (Russel and Norvig, 1994). Consequently, only in
smaller problems breath-first search can be used.

2.5.2 Informed or Heuristic Search

As one can realize, uninformed search strategies are not very efficient in large search spaces.
In these cases, heuristics guiding the search must be considered. Heuristics can decide which
of the available operators will lead the search closest to the final state. As stated earlier this
requires an evaluation function to assess the goodness value of each state reached.

Best-first The best-first search differs from breadth-first in that it always looks for the most
promising state, trying to speed up the search. However, there is the danger of falling to
a local maximum of the evaluation function rather than the global maximum.

Greedy For most problems, the evaluation function can be estimated but cannot be determined
exactly. A function that estimates the evaluation function is called a heuristic function.
When the best-first search uses the heuristic function to select the next state to expand
it is called greedy search. For example, consider a map with several cities but no route
is actually shown in the map. An heuristic function that can be used to replace the true
distance from one city to others is the straight line distance.

Greedy search resembles depth-first search, suffering from the same defects: it is nor

optimal neither complete.

Beam A more economical search than best-first (remember it stores all generated states) is
the beam search that retains only S best states at any time. Therefore, at each step, if
the number of current states is larger than S, the algorithm keeps only the S best states
and deletes all others.

Hill-Climbing Hill-climbing is an instantiation of beam search, defining S = 1. The name is
meant the resemblance to hill climbers striving to find the shortest path to the peak and
always picking the steepest path.

2.6 The Bias plus Variance Decomposition
This decomposition is useful in understanding the properties of

predictors.

—Leo Breiman (Breiman, 1996¢)

The predictor Fundamental Decomposition (Breiman, 1996¢; Breiman, 1996a) principle states
that the predictor error can be viewed as three basic components:

21

1. the minimum error that can be obtained by the ideal classifier or predictor: the lower
bound on the expected error of any learning algorithm;

2. the bias which measures how closely the learning algorithm’s average guess, over all pos-
sible training sets of the given size that matches the target;

3. the variance which measures how much the learning algorithm’s guesses will vary with
respect to each other i.e., how often it fluctuates for different training sets of the given
size.

For classification, in Equation 13, f = B* is the Bayes classifier, which gives the minimum
classification error rate ce(f) = ce(B*). For regression, in Equation 14, pe(f) is the minimum
regression error given by the true hypothesis (function) f. Bias and variance are always positive
terms — see (Breiman, 1996¢) for more details on how to compute bias and variance of a
predictor. At some data points bias predominates, at others the variance. But, in general, at
each point X both contributions are positive.

ce(h) = ce(f) + bias(h) + variance(h) (13)

pe(h) = pe(f) + bias(h) + variance(h) (14)

This decomposition is important in comprehending the relationship between bias and variance
and the behaviour of a predictor. In general, an inducer builds partitions in the description
space in a certain way such that can be considered as a family of functions H. For instance, most
of decision trees or rule induction inducers divide the space into rectangular regions whereas
neural net can divide the space into more complex regions. In any case, each inducer tries to
select the best classifier h, using the training set, from the set of functions H.

For example, if the family of functions H that can be generated by an inducer is the small
set of linear functions and the true predictor f is fairly nonlinear, then the bias of h will be
large. On the other hand, since a small number of parameters are estimated from the small
set H, the variance of A will be low. But if H is a large family of functions like the set of
functions represented by decision trees or neural nets then the bias is usually small (since is
almost possible to approximate the true function f by some h € H) but the variance can be
large (because several parameters can be adjusted).

2.7 Measure Estimation: Resampling

If you want to show that one algorithm is always more accurate, then
forget it: this simply cannot be proven.

—Steven L. Salzberg (Salzberg, 1995)

As described earlier, a learning system extracts a predictor from a dataset. Usually, the dataset
itself is a sample from a larger population. We also have pointed out that the dataset is divided
into two disjoint sets: the training set and the test set. Measures, for example errors, taken

22

from the test set can be considered as the true error since it approximates to the population
error if the test set size is large enough. When test sample size reaches 1000, the estimates are
extremely accurate and with 5000 instances the sample estimate is almost identical to the true
error of the population (Weiss and Kulikowski, 1991).

It is important for estimating the true error the sample to be random. This means that the
samples should not be pre-selected in any way. For real problems, one is given a sample from a
single population of size n and the task is to estimate the true error for that population (not for
all populations). There are several paradigms for estimating the true error that are following
described and also summarized in Table 8.

holdout random leave-onc-out r-fold ¢cv r-fold strat ¢v bootstrap
Train size n t n—1 n(r—1)/r n(r—1)/r n
Test size (I-pn n—t 1 n/r n/r n—t
Iterations 1 I<n n T T 200
Replacement no no no no no ves
Class Prevalence no no no no ves yes/no

Table 8: Estimators Parameters

Resubstitution This procedure consists in building the classifier and testing its performance
on the same dataset i.e., the training set and the test set are identical. It is also called
apparent measure estimation. It is well known that performances computed with this
method are optimistically biased: the good performance on the training set does not
extend to independent test sets.

Since the bias of the resubstitution estimator has been discovered, cross-validation meth-
ods have been proposed. They are all based on the same principle: there should be no
common data in the learning and in the test sets.

Holdout The holdout estimator splits the data in a fixed percentage of instances p for training
and (1 — p) for testing, usually taking p > 1/2. Typical values used are p = 2/3 and
(1 —p) =1/3, although there is no theoretical foundations on these values.

In order to make the result less dependent on the splitting, one can average several holdout
results, by building several partitions thus giving an averaged holdout method. Since a
classifier designed on the entire data set will, on average, perform better than a classifier
designed on only a part of the data, this method has a tendency to overestimate the actual
error-rate.

Random Random subsampling can produce better error estimates than a holdout estimation.
In this case, I predictors, I < n, are induced from each training set and the error is the
average of the error for predictors derived for independently and randomly generated test
sets.

r-fold cross-validation This estimator is a compromise between the holdout and the leave-
one-out estimator. In the r-fold cross-validation — CV — the instances are randomly
divided into r mutually exclusive partitions (folds) of approximately equal size of n/r
instances, with » < n. The instances in the (r — 1) folds are independently used for
training and the extracted predictor is tested on the remaining fold. This process is
repeated r times, each time considering a different fold for testing. The cross-validation
error is the average error over all r folds.

23

This rotation procedure reduces both the bias inherent to the holdout method and the
computational burden of the leave-one-out. However, observe that, for example, in a ten-
fold cross-validation, each pair of training sets shares 80% of the instances. It is easy to
generalize that the proportion of shared instances in cross-validation is given by (1 —2/r)
for r > 2 folds, plotted in Figure 9. As the number of folds increases, this overlap may
prevent statistical tests from obtaining a good estimate of the amount of variation that
would be observed if each training set were completely independent from each other.

100%

80%

60%

40% /

20%

Percentage of Shared Instaces

2 5 10 15 20 25 30 35 40 45 50
Number of Folds

Figure 9: Number of folds versus percentage of shared training instances in cross-validation

r-fold stratified cross-validation The stratified cross-validation is similar to cross-validation
but when generating the mutually exclusive folds, the class distribution — the proportion
of instances in each class — is considered during sampling. This means, for instance, that
if the original dataset with two class labels having 20% and 80% distribution, each fold
will also follow this ratio.

Leave-one-out Leave-one-out is a special case of cross—validation. It is computationally ex-
pensive and is often used in small samples. For a sample of size n a predictor is extracted
using (n — 1) instances and tested on the single remaining instance. This process is re-
peated n times, each time building a predictor by leaving one instance out. The error is
the sum of errors on the single test instances divided by n.

Bootstrap For the bootstrap estimator (Efron and Tibshirani, 1993), the basic idea is to repeat
several times the whole classification experiment a large number of times and to estimate
quantities like bias from these replicate experiments, each experiment being proceed on
the basis of a new training set obtained by resampling with replacement in the original
dataset.

There are many bootstrap estimators. The most common bootstrap estimator is the
el bootstrap. A bootstrap training set consist of n instances (as the original dataset)
sampled with replacement from the original dataset. This means that an instance T; may

24

not appear in the bootstrap training set, some 1; may appear more than once. The
remaining instances (those that did not appear in the bootstrap training set) are used as
the test set. In the remaining of this work we will always refer to bootstrap as the e0
bootstrap.

For a given bootstrap sample, an instance in the training set has probability 1 —(1—1/n)"
of being selected at least once in the n times instances are randomly selected from the
training set. For large n, this is approximately 1 — 1/e = 0.632.

Therefore, for this technique, the average fraction of non repeated instances in the training
set is 63.2% and the expected fraction of such instances in the test set is 36.8%. The
estimated error is the average of the error over the number of iterations. About 200
iterations for bootstrap estimates are considered necessary to obtain a good estimate if
the original dataset is small. The estimate of the error from this method is statistically
equivalent to the leave-one-out error estimate.

2.8 Combining Predictors: Ensembles

Ensembles are well-established as a method for obtaining highly
accurate classifiers by combining less accurate ones. There are still
many questions, however, about the best way to construct ensembles
as well as issues about how to understand the decisions made by
ensembles.

—Thomas G. Dielterich (Dielterich, 1997a)

An ensemble consists of a set of individual predictors whose predictions are combined when
predicting novel instances labels. Previous research has shown that an ensemble is often more
accurate than any of the individual predictors in the ensemble i.e., multiple classifiers have been
shown to lead to improved predictive accuracy when classifying instances that are not among
the training set. There is considerable diversity in the methods used to assemble the ensembles,
including:

Stack In Stacking (Wolpert, 1992) the descriptions of the training instances are extended to
include the results of classifying the instances with an initial selection of classifiers. The
new descriptions are then analyzed to yield further classifiers, and so on.

Window Windowing (Quinlan, 1988) selects a subset of instances (a window) from the training
set and generates a hypothesis from this subset. This hypothesis is then used to classify
the remaining training instances i.e., those that have not been included in the window. If
there are misclassified instances, a selection of them is added to the initial window and a
second hypothesis is constructed from the enlarged window. This cycle is repeated until a
hypothesis built from the current window correctly classifies all training instances outside
the window or the number of cycles exceeds a pre-defined value L as shown in Algorithm 1
(once again, the || E || operator returns 1 if F is true and zero otherwise).

Bagg Bagging (Breiman, 1996b) — Bootstrap Aggregation — generates one bootstrap sample
S1 and induces an hypothesis k1. This cycle is repeated L times for each bootstrap sample
59,53, ...,5r inducing hypotheses ho, hs, ..., hr, respectively. After that, all extracted
classifiers are combined into the final classifier h* using a majority vote as shown in
Algorithm 2 i.e., the most commonly predicted class by all hy, ho, hs, ... , hr classifiers is
the predicted class given by h* as Equation 15 shows.

25

Algorithm 1 Windowing

Require: Instances: a set of n labeled instances {(z;,¥i),i =1,2,... ,n}

10:
11:
12:
13:

© »® NPT

Inducer: a learning algorithm

W: the initial window size, W := max{0.2n,2/n} in (Quinlan, 1988)
I: the increment to window, I := max{0.2W, 1} in (Quinlan, 1988)
procedure window(n,Instances,Inducer,L, W .TI)

window; := sample(W Instances)

L:=(n-W)/I // number of windows
for [:=1to L do
h; := Inducer(window;)
error(hy) 1= 3, gwindow, | P1(@i) = yi || // error on instances outside the window
if error(h;) = 0 then
exit loop // all instances correctly classified
end if

window;41 := window; + include almost I misclassified instances by h; from Instances
end for
h*(x) := hy(r)

return h*

Algorithm 2 Bagging

Require: Instances: a set of n labeled instances {(z;,v;),i =1,2,... ,n}

10:

© ® NPT

Inducer: a learning algorithm
L: the number of bagging classifiers
procedure bagg(n,Instances,Inducer,L)
for 7 := 1 to n do
pi:==1/n // initialize normalized weights
end for
for/:=1to L do
S; := bootstrap_sample(n,p,Instances)
hy = Inducer(S;)

end for

h*(x) := argmax Sy || hi(z) =y ||
y€{017027...7ck}

return h*

L
h*(x) = argmax Z | () =y | (15)
y€{C1,C2,... Cy} |=1

In regression problems, h* is usually taken as the average value for all predictors as shown
in Equation 16.

L
W) =73 i) (16)
=1

Bagging is most effective on unstable learning algorithms where small changes in the
training set result in large changes in predictions.

26

Wagg Wagging — Weight Aggregation — is similar to bagging but it change the weights of
instances in the training set instead of sampling. In fact, this method repeatedly perturbs
the training set as bagging does but, instead of sampling from it, wagging adds Gaussian
noise to each weight with mean zero and a fixed standard deviation, usually two. At each
trial wagging starts with all weights equal and then noise is added to the weights and a
classifier is induced (Bauer and Kohavi, 1999).

Boost Boosting was introduced by (Schapire, 1990) as a method for boosting the perfor-
mance of a weak learning algorithm. After some improvements the AdaBoost — Adap-
tive Boosting — was introduced by (Freund and Schapire, 1995), sometimes called Ad-
aBoost.M1 (Freund and Schapire, 1996).

The boosting algorithm, shown in Algorithm 3, generates classifiers sequentially while
bagging can generate them in parallel. Each training instance has an associated weight.
At every boosting iteration a classifier is built from the weighted training instances and
each case is then reweighted according to whether or not it is misclassified.

When inducing the first classifier all instances are equiprobable i.e., each instance have the
same weight associated with it. After inducing this first classifier, boosting changes the
weights of the training instances provided as input to the inducer based on the classifiers
that were previously built. This cycle is repeated L times.

The final classifier is formed using a weighted voting scheme where the weight of each
classifier depends on its performance on the training set used to build it as Equation 17
shows. In this equation, error(h;) is the error for classifier h; in its corresponding training
set.

1 — error(hy)

L
h* (;1‘) = arg max Z log < error(h,l)

)) =] (17)
ye{C1,C2,.. .Cr} 11

The AdaBoost algorithm requires an inducer whose error is bounded by a constant strictly
less than 1/2 — see (Freund and Schapire, 1995) for more detail. Some implementations
of boosting uses resampling because some inducers are unable to support weighted in-
stances (Freund and Schapire, 1996). Some evidence show that reweighting works better
in practice (Quinlan, 1996) since the inducer is given all instances (with weights) instead
of just a sample.

There are many revisions to the AdaBoost algorithm. Two special revisions suggested
by (Breiman, 1996¢; Breiman, 1996a) are shown in Algorithm 4. If error(h;), the error of
classifier h;, becomes equal or greater than 1/2 better results can be obtained by setting
all weights w; equal to 1/n and restarting. Also, if error(h;) is equal zero, making the
subsequent step undefined, again all weights are set equal to 1/n.

Another implicit change is related to the use of resampling instead of reweighting in the
algorithm. This is an important issue, since, for deterministic inducers like decision trees
or rule induction, setting all weights equal to 1/n would generate the same classifier again.

In (Bauer and Kohavi, 1999), reweighting is used as suggested in the original AdaBoost
algorithm, but when error(h;) > 1/2 or error(h;) = 0, a bootstrap sample is taken with
weights equal to 1/2 for all instances and almost L = 25 classifiers are built; also precision
problems are reported for weights and they have changed the original weight distribution
to sum n instead summing 1.

27

Algorithm 3 Boosting (AdaBoost.M1)

Require: Instances: a set of n labeled instances {(z;,¥;),i =1,2,... ,n}
Inducer: a learning algorithm accepting instances weighting
L: the number of boosting classifiers
1: procedure boost(n,Instances,Inducer,L)
2: for alli:=1ton do

3 w;i=1/n // initialize the weights

4: end for

5: for [:=1to L do

6: fori:=1tondo

7: pi = wi/ (3054 wy) // normalize the weights
8: end for

9: hy := Inducer(Instances,p)

10: error(hy) = iy pi || i) # yi || // compute the hypothesis error
11: if error(h;) > 1/2 then

12: L:=1-1

13: exit loop

14: end if

15: [y := error(hy)/(1—error(hy))
16: for i :=1ton do

17: if hy(x;) = y; then

18: w; = w5 // compute new weights
19: end if

20: end for

21: end for

22: h*(x) == argmax S.F,log(1/3) || hi(z) =y ||
y€{C1,C2,...,Cr}
23: return h*

Arc Adaptively Resample and Combine — Arcing — is a term defined in (Breiman, 1996a)
to describe the family of algorithms the adaptively resample and combine, including Ad-
aBoost which he calls arc-fs (in honor of Freund & Schapire) as the primary example of
an arcing algorithm. Breiman also contrasts arcing with the P&C family (Perturb and
Combine), of which bagging is the primary example.

The arc-x4 algorithm, shown in Algorithm 5 was described by Breiman as being as accurate
as arc-fs (AdaBoost) without the weighting scheme used when building the final arc-fs
clagssifier. Thus, the AdaBoost’s strength is derived from the adaptive reweighting of
instances and not from the final combination, as stated by (Breiman, 1996c¢):

“Here is how arc-x4 was devised. After testing arc-fs I suspected that its suc-
cess lay not in its specific form but in its adaptive resampling property, where
increasing weight was placed on those cases more frequently misclassified. To
check on this, I tried three simple update schemes for the probabilities p;. In
each, the update was of the form (1 + z¢) , and a = 1,2,4 was tested on the
waveform data?. The last one did the best and became arc-x4. Higher values
of a were not tested so further improvement is possible.”

2The value a; refers to the number of times the instance i was misclassified by the previous extracted classifiers.
Note that the notation x; in this quote has no relationship with the notation adopted in this work to describe
instances.

28

Algorithm 4 Boosting (with revisions suggested by Breiman)

Require: Instances: a set of n labeled instances {(z;,¥;),i =1,2,... ,n}
Inducer: a learning algorithm accepting instances weighting
L: the number of boosting classifiers

1: procedure boost(n,Instances,Inducer,L)

2: fori:=1tondo

3 w;i=1/n // initialize the weights

4: end for

5. for [:=1to L do

6: fori:=1tondo

7 pi = wi/ (3054 wj) // normalize the weights
8: end for

9: S; := bootstrap_sample(n,p,Instances)

10: hy := Inducer(S))

11 error(hy) := 3, cq, i || (i) # i || // compute the hypothesis error over Sj
12: if error(h;) > 1/2 or error(h;) = 0 then

13: fori:=1tondo

14: w; = 1/n

15: end for

16: else

17: By = error(h;)/(1—error(hy))

18: fori:=1tondo

19: if hy(z;) = y; then

20: w; = w3 // compute new weights
21: end if

22: end for

23: end if

24: end for

25 h(x) = argmax Y log(L/8) | @) =y |

ye{C1,C2,...,Cy}
26: return h*

In general, bagging is almost always more accurate than a single classifier, but it is sometimes
much less accurate than boosting. On the other hand, boosting can create ensembles that are
less accurate than a single classifier. In some situation, boosting can overfit noisy datasets, thus
decreasing its performance.

On the other hand, ensembles usually generate a large classifier, contrary as stated in the
Ockham’s razor. For example, in (Margineantu and Dietterich, 1997), using the Frey-Slater
letter dataset (Blake et al., 1998) with 16 numeric features and 16000 instances, it is possible
to achieve very good accuracy on the test set with 4000 instances by voting 200 classifiers.
Including training and test sets, the dataset requires less than 700 Kbytes (in fact, less than
370 Kbytes without delimiters). However, each classifier requires 295 Kbytes of memory, so an
ensemble of 200 classifiers requires 58 Mbytes, more than 85 times greater than the dataset (or
164 times the whole dataset without delimiters).

29

Algorithm 5 Arcing (arc-x4)

Require: Instances: a set of n labeled instances {(z;,¥;),i =1,2,... ,n}
Inducer: a learning algorithm accepting instances weighting
L: the number of arcing classifiers
1: procedure bagg(n,Instances,Inducer,L)
2: for alli:=1ton do
33 pi=1/n // initialize the weights
4 m; =10 // number of misclassification of instance i by classifiers 1,2,... 1
5. end for
6: forl:=1to L do
7. S; := bootstrap_sample(n,p,Instances)
8: hy = Inducer(S))
9. fori:=1tondo
10: mi = mi+ || h(zi) # il // update misclassifications
11: end for
12: fori:=1tondo
13: pi = (1+mi)/ (X (1+ m?)) // compute new normalized weights
14: end for
15: end for
16 h*(x) = argmax SE | hu(r) =y |
ye{C1,Cs,...,Cr}
17: return h*

2.9 Evaluating Predictors

Experimental machine learning research needs to scrutinize its approach
to experimental design. If not done carefully, comparative studies
of classification algorithms can easily result in statistically invalid
conclusions.

—Steven L. Salzberg (Salzberg, 1995)

Machine Learning is a powerful tool, but there is no algorithm that dominates all others for
all problems. Thus, it is important to understand the strengths and limitations of different
algorithms.

One approach that can work well in practice is to try different algorithms, estimate their accu-
racy, and pick the one with the highest estimated accuracy for a given domain. This method
will work well as long as there are not too many algorithms being tried and when we have reason
to believe that they are appropriate for the domain.

A standard evaluation methodology adapted from (Russel and Norvig, 1994, Chapter 18) is the
following:

1. collect a large set of instances, all with correct feature values and class labels i.e., noisy
free instances for a specific domain. If 100% noisy free data is not possible, try to reduce
instances with incorrect feature values or wrong class labels. As much as possible, try
to choose features with predictive power somewhat above random chance to the problem
being considered;

2. randomly divide this set into two disjoint sets: the training set and the test set (or use

30

one of the resampling estimators or ensembles described in the two earlier sections);

3. apply one or more inducers to the training set, obtaining one distinct hypothesis h for
each one;

4. measure performance of the generated predictor i on the test set. Here it is possible
to measure simply error (see Section 2.9.2 for comparing algorithms using error). Other
aspects can also be considered like time for learning, size of the extracted predictor, rule
quality (Freitas, 1998a; Freitas, 1998b; Horst, 1999), etc;

5. to study the efficiency and robustness of an inducer, repeat steps 2 to 4 for different
training sets and sizes of training sets;

6. if you are proposing or adjusting an inducer, start again with step 1 to avoid evolving the
algorithm to work well on just one dataset for a specific domain.

2.9.1 Calculating Mean and Standard Deviation using Resampling

Before comparing two algorithms, some additional equations will be necessary. We assume the
use of cross—validation since it is a fairly used method in ML. However, any other resampling
technique (except resubstitution) can be used besides cross—validation.

Given an algorithm A, for each fold i the error, denoted by pe(h;), i = 1,2,... ,r is calculated.
Then the final mean, variance and standard deviation for all folds are calculated by Equations 18,
19 and 20, respectively.

mean(A) = % 3 pehy) (18)
i=1
var(A) = % L« e =) (pe(h) — mean(4))? (19)
i=1
sd(A) = y/var(A) (20)

Observe that the term 1/(r — 1) in Equation 19 comes from the definition of unbiased variance
estimator whereas the term 1/r comes from the Central Limit Theorem (remember that pe(h;)
is itself an average) for estimating variance of averages (Moses, 1986, Chapter 4).

To make this idea more clear, suppose running a ten-fold cross—validation i.e., » = 10, for al-
gorithm A with the following errors (5.50, 11.40, 12.70, 5.20, 5.90, 11.30, 10.90, 11.20, 4.90, 11.00).
Then Equations 18 and 20 become:

mean(A) = % =9.00

1
sd(A) = ,/m90.30 =1.00

31

In general, the error is represented as its mean followed by the token “£” followed by its standard
deviation; in our example, the error is 9.00 &+ 1.00.

It is important to note that most of ML programs that perform cross—validation already take
care of these calculations, for example, the MLC++ library (Kohavi et al., 1994; Kohavi et al.,
1996; Felix et al., 1998) or the MineSet™ (Rathjens, 1996) tool.

2.9.2 Comparing Two Algorithms

When trying to compare two algorithms just looking to numbers, for example error rates for
classification or error for regression, it is not easy to realize if one algorithm is better than the
other. In many situations, to compare a pair of ML algorithms, the error (mean and standard
deviation) obtained through r-fold stratified cross—validation is usually used (to maintain class
distribution). In fact, many papers report error using ten-fold cross—validation or stratified
cross—validation.

When comparing different inducers on the same domain, the standard deviation may be seen as
an image of the algorithm robustness: if the error on different test sets with the classifiers build
on different training sets is very different from one test to another the classification algorithm
is not robust to a change of the training set taken from the same dataset.

Now, suppose one wish to compare two algorithms with error rates equals to 9.00 & 1.00 and
7.50+£0.80. Which one is significantly better (at 95% confidence level)? To answer this question,
assume the general case to determinate whether the difference between two algorithms — say Ag
and Ap — is significant or not. In general, comparisons are made such that Ap is the algorithm
proposed and Ag is the standard algorithm. For this, the combined mean and standard deviation
are calculated according with Equations 21 and 22, respectively. The absolute difference in
standard deviations is computed using Equation 23.

mean(Ags — Ap) = mean(Ag) — mean(Ap) (21)

Sd(AS_AP>:\/sd(AS)Q_;_sd(AP)Q -

mean(Ag — Ap)
Sd(AS - Ap)

ad(Ag — Ap) = (23)

If ad(Ag — Ap) > 0 then Ap outperforms Ag. Now, if ad(Ags — Ap) > 2 standard deviations
then Ap outperforms Ag at 95% confidence level. On the other hand, if ad(As — Ap) < 0 then
Ag outperforms Ap and if ad(Ag— Ap) < —2 then Ag outperforms Ap at 95% confidence level.

Backing to the same example described earlier, assume Ag = 9.00+1.00, the standard algorithm
and Ap = 7.50 & 0.80, the proposed algorithm. Looking just to the number there is a tendency
to say that Ap is better than Ag but using Equations 21, 22 and 23, we obtain:

32

mean(Ag — Ap) =9.00— 7.50 = 1.50

/1.002 + 0.802
sd(Ag — Ap) = +: 0.91

1.50

Consequently, as ad(As—Ap) < 2, Ap does not significantly outperform Ag (at 95% confidence
level). There are several others statistical tests to measure the significance of any difference
between two algorithms, besides the one here described (Freedman et al., 1998). For a good
review on comparing predictors, refer to (Salzberg, 1995; Dietterich, 1997b).

2.10 Summary

It is of interest to note that while some dolphins are reported to have
learned English — up to fifty words used in correct context — no
human being has been reported to have learned dolphinese.

—Carl Sagan

To make machine learning work, we must investigate different structures that may be appro-
priate for different contexts and understand their strengths and limitations. Machine learning
works in many practical applications because the target concepts are not equiprobable and the
algorithms are somewhat “aligned” with real world phenomena: features are usually selected
by experts and smoothness assumptions that algorithms assume do hold in many situations.

The more we understand about the underlying structures used by classifiers, the more we can
modify them based on background knowledge. Similarly, the more we understand the induction
algorithms and their assumptions, the easier it is to modify them.

In the next two sections we shall concentrate in general algorithms that learn concepts rep-
resented by propositional descriptions such as decision trees — Section 3 — and rule sets —
Section 4.

3 Top Down Induction of Decision Trees

When Kepler found his long-cherished belief did not agree with the
most precise observation, he accepted the uncomfortable fact. He
preferred the hard truth to his dearest illusions, that is the heart of
Science.

—Carl Sagan

We start this section explaining basic concepts about inductive learning when acquired knowl-
edge is represented as a decision tree. This sort of algorithms are members of the Top Down
Induction of Decision Trees — TDIDT — family.

A Decision Tree — DT — is a recursive data structure defined as:

33

e a leaf node that indicates a class label, or

e o decision node that contains a test on a feature value. For each outcome of the test there
are one branch and one subtree. Each subtree has the same structure as the tree.

Figure 10 shows an illustrative example of a decision tree for diagnosing a patient. In this figure,
each ellipse is a test in one feature from some patient data. Each box is a class label i.e., the
diagnosis. To diagnose (classify) a patient we start at the root just following each test down
the tree until a leaf is reached.

Is patient feeling
good?

healthy

Has patient
pain?

Patient’s
temperature

sick

healthy sick

Figure 10: A simple decision tree for diagnosing a patient

It is easy to see that a tree can be represented as a set of rules. Each rule starts at the root
and walks down to the leaves. For instance, the tree shown in Figure 10 can be read as:

if is patient feeling good = yes then
class = healthy
else
if has patient pain = no then
if patient’s temperature < 37 then
class = healthy
else {patient’s temperature > 37}
class = sick
end if
else {has patient pain = yes}
class = sick
end if
end if

As rules that represent a decision tree are disjunct 7.e., only one is fired when a new unlabeled
instance is classified, an alternative way of representing these rules would be writing a separate
rule for each leaf node, starting at the root, consequently no else is really needed:

34

if is patient feeling good = yes then
class = healthy
end if
if is patient feeling good = no and has patient pain = no
and patient’s temperature < 37 then
class = healthy
end if
if is patient feeling good = no and has patient pain = no
and patient’s temperature > 37 then
class = sick
end if
if is patient feeling good = no and has patient pain = yes then
class = sick

end if

3.1 Building a Decision Tree

The method for constructing a decision tree from a set 1" of training instances is surprisingly
simple. Let the classes be denoted by {C1,Co,...,Ci} then the following steps should be
followed:

1. T contains one or more instances, all belonging to a single class Cj. In this case, the DT
for T is a leaf identifying the class C;

2. T contains no instances. Again, in this situation the DT is a leaf but the class associated
with the leaf must be determined from information other than 1. For example, the most
frequent class at the parent of this node could be used.

3. T contains instances that belong to several classes. In this case the idea is to refine T into
subsets of instances that are (or seem to be) single-class sets of instances.

Normally, a test is chosen, based on a single feature, that has one or more mutually
exclusive outcomes (in fact, each inducer has its own way to choose the feature to test).
Let us denote these outcomes as {O1,Oa,...,0,}. T is then partitioned into subsets 17,
15, ..., T,, where T; contains all cases in T' that have outcome O; for the chosen test. The
DT for T consists of a internal decision node identified by the chosen test and one branch
for each possible outcome.

4. Steps 1., 2. and 3. are applied recursively to each subset of training instances so that the
i-th branch leads to the DT constructed from the subset T; of training instances.

5. After building the DT, pruning may take place (see Section 3.3).

3.2 Choosing the Best Feature to Split

The key to the success of a DT learning algorithm depends on the criterion used to select the
feature for splitting. Some possibilities for selecting this feature are:

¢ Random: select any feature at random,;

35

e Least—Values: choose the feature with the smallest number of possible values;
e Most—Values: choose the feature with the largest number of possible values;

e Max-Gain: choose the feature that has the largest expected information gain i.e., select
the feature that will result in the smallest expected size of the subtrees rooted at its
children

e Gini (Breiman et al., 1984);

e Gain ratio (Quinlan, 1988).

3.3 Tree Pruning

After building the DT, it is possible that the generated classifier to be very specific for the
training data. In this case, we say that the classifier overfits the training data too well. As
the training data is only a sample of all possible instances, it is possible to add branches to
the tree that improve performance on this training data while decreasing performance on other
instances outside this training data. In this situation, the accuracy (or other measure) on an
independent (unseen) dataset yields to a poor performance classifier.

Figure 11 — which is similar to Figure 5 — illustrates the impact of overfitting in decision tree
learning (Mitchell, 1998). The horizontal axis of this figure indicates the total number of nodes
in the DT, as the tree is being constructed. The vertical axis indicates the error of predictions
made by the tree. The dotted line shows the error rate of the DT over the training data whereas
the solid line shows error rate measured over the test data which is not included in the training
data. As expected, the error over the training data (apparent error) decreases monotonically
as the tree is grown. However, the error measured over the test data (true error) first decreases
up to N2 nodes in the tree, then increases.

A
Error
rate

Test
(unseen)
data

N1 N2 N3
Number of nodes (tests)

Figure 11: The relationship between tree size and error rate
In order to try not overfitting the data, some inducers prune the DT after inducing it. This

process, shown in Figure 12, reduces the number of internal test nodes thus reducing the tree
complexity while giving a better performance than the original tree. In general, DT inducers

36

@&??%@

Figure 12: A larger tree is first grown that overfits the data and then pruned back to a smaller
(simpler) tree

split by itself the dataset into a training set (which is used for building the DT) and a prune
set which is actually used for pruning.

This type of pruning is also called pos-pruning since it occurs after building the D'T. There are
many pos-pruning methods including error-complexity (Breiman et al., 1984) and pessimistic
error (Quinlan, 1988).

It is also possible to use pre-pruning. This process is done while the DT is induced. However,
pre-pruning suffers one side-effect: conjunctions of tests may be the best way for partitioning
the instances, but their individual features may not distinguish well the instances. Thus, pre-
pruning can prevent the conjunctions from appearing in the tree.

3.4 Classifying New Instances

A DT can be used to classify new instances by starting at the root of the tree and going through
each decision node until a leaf is found. When a leaf is encountered, the class label of the new
instance is predicted as that one recorded at the leaf.

Remember there is only one path from the root to the leaf of every tree. Each path from the
root to each leaf can be considered as a rule. In this case, given an instance it can be classified
only by one rule, or in other words, each instance classified by one rule can not be classified
by another rule. It is easy to generalize, as already pointed out, that all rules extracted from
decision trees are always disjunct.

3.5 Basic Algorithm

The basic TDIDT inducer is illustrated in Algorithm 6.

3.6 An Example

This section shows a running example, adapted from (Quinlan, 1988), for better understanding
how to build and use a DT. In order to clarify the difference among the various machine learning
approaches considered in this work, the same example will be used in the remaining sections.

Let us suppose a dataset containing day-by-day measures from weather conditions where each
instance is composed of the following features:

37

Algorithm 6 TDIDTs

- W N =

ot

_ = =
N = O

: procedure TDIDT(Instances)
: Split Instances into Traininglnstances and Prunelnstances

tree := generate_tree(TrainingInstances)

: Pruned_tree := prune(tree,Prunelnstances)
: return Pruned_tree

procedure generate_tree(Instances)

. if termination_condition(Instances) then

Node := majority_class(Instances)
else

Best_test := selection_function(Instances)

Node := new_node(Best_test)

for all outcome value O of Best_test do
S := {T in Instances : satisfies(7,Best_test = O)}
Node.subtree[O] := generate_tree(S)

end for

: end if

: return Node

outlook: assumes discrete values “sunny”, “overcast” or “rain”;

temperature: a numeric value indicating the temperature in Celsius degrees;

e humidity: also a numeric value indicating the percentage of humidity;

e windy: assumes discrete values “yes” or “no” indicating if it is a windy day.

Furthermore, for each day (instance), someone has labeled each day-by-day measure as “go”
if weather was nice enough for taking a trip to the farm or “dont_go” if this is not the case.
The data could look just like the one shown in Table 9. Although this example has only two
possible class labels, it is important to recall that a DT can handle any number k of classes

{01,02,... ,Ck}.

Instance No. Outlook Temperature Humidity Windy Voyage?

Ty sunny 25 72 yes £o
15 SULILY 28 91 ves dont_go
T3 sunny 22 70 no £o
Ty sunny 23 95 no dont_go
Ts sunny 30 85 no dont_go
Ts overcast 23 90 yes go
17 overcast 29 78 no £o
T3 overcast 19 65 ves dont_go
Ty overcast 26 75 no go
Tio overcast 20 87 ves go
T rain 22 95 no 2o
AD rain 19 70 ves dont_go
113 rain 23 80 ves dont_go
T4 rain 25 81 10 go
Tis rain 21 80 no 2o

Table 9: The voyage data

38

Now, let us induce a decision tree from this data. Since the training set I’ contains instances
belonging to more than one class, we need to choose a test based on a single feature. As described
in Section 3.2, choosing a feature to split the data depends on each inducer implementation.
For this example, let us choose outlook as test having three possible outcomes {O1, 02, O3} =
{sunny, overcast, rain}. Then 7 is partitioned into 3 subsets as shown in Table 10 and its
corresponding Figure 13.

Test Inst.No. Outlook Temperature Humidity Windy Voyage?

if outlook = sunny T SULILY 25 72 ves go
15 SULILY 28 91 ves dont_go
Ts sunny 22 70 no go
Ty sunny 23 95 no dont_go
15 SULILY 30 85 no dont_go

if outlook = overcast T overeast 23 90 yes go
ik overcast 29 78 no go
T overeast 19 65 yes dont_go
Ty overcast 26 75 1o £o
Tho overcast 20 87 yes £o

if outlook = rain Ti1 rain 22 95 no 2o
T rain 19 70 ves dont_go
T3 rain 23 80 ves dont_go
T4 rain 25 81 1O go
Tis rain 21 80 no 2o

Table 10: Building a DT from the voyage data (step 1)

overcast

Figure 13: Building a DT from the voyage data (step 1)

As can be seen, each subset still contains instances belonging to several classes, therefore we
need to choose a new test based on a single feature. Let us choose humidity for the sunny and
overcast outcomes and windy for the rain outcome. Each subset is now partitioned as shown in
Table 11 and its corresponding Figure 14.

After having constructed the complete DT from the data, consider the branch:

if outlook = overcast then
if humidity > 70 then
class = go {Covered instances: Ty, T7, Ty, T10}
else {humidity < 70}
class = dont_go {Covered instance: 73}
end if
end if

It can be seen that there is only one instance (13) for the test “humidity < 707; all other
instances for the overcast outcome belong to “class = go”. This may indicate an overfitting of
the data and the inducer may prune this tree, as can be seen in in Table 12 and its corresponding

39

Test Inst.No. Outlook Temperature Humidity Windy Voyage?

if outlook = sunny T SULILY 25 72 ves go

and humidity < 78 T3 sunny 22 70 no 2o

if outlook = sunny Ty SULILY 28 91 ves dont_go

and humidity > 78 Ty SULILY 23 95 no dont_go
15 sunny 30 85 no dont_go

if outlook = overcast Ts overcast 23 90 yes £o

humidity > 70 1% overcast 29 78 no go
Ty overcast 26 75 1o go
Tio overcast 20 87 yes go

if outlook = overcast

and humidity < 70 13 overcast 19 65 ves dont_go

if outlook = rain Ti1 rain 22 95 no 2o

and windy = no Ty rain 25 31 no go
115 rain 21 80 1O go

if outlook = rain Tio rain 19 70 yes dont_go

and windy = yes T3 rain 23 80 yes dont_go

Table 11: Building a DT from the voyage data (step 2)

go

dont_go

dont_go

overcast

rain

go

go

Figure 14: Building a DT from the voyage data (step 2)

Figure 15.

Tree pruning, in general, will improve true classification on unseen data. This may appear
counter—intuitive since by pruning some information is thrown away — instance 73 in this
example. However, when learning from noisy data, a correct amount of pruning may improve
classification on unseen data. In fact, pruning may eliminates error in data due to noise instead

of throwing away relevant information (Bratko, 1990).

3.7 Geometric Interpretation

Considering instances as a vector of m features, such a vector corresponds to a point in the
m-dimensional feature space. From this point of view, a DT corresponds to a division (for each

test) of this space into regions, each region labeled with a class.

40

dont_go

Test Inst.No. Outlook Temperature Humidity Windy Voyage?

if outlook = sunny T SULILY 25 72 ves go

and humidity < 78 T3 sunny 22 70 no 2o

if outlook = sunny Ty SULILY 28 91 ves dont_go

and humidity > 78 Ty SULILY 23 95 no dont_go
15 sunny 30 85 no dont_go

if outlook = overcast Ts overcast 23 90 yes £o
17 overcast 29 78 1o go
T3 overcast 19 65 ves dont_go
Ty overcast 26 6] no go
Tio overcast 20 87 yes go

if outlook = rain Ti1 rain 22 95 no go

and windy = no Tha rain 25 81 no 2o
Tis rain 21 80 no 2o

if outlook = rain T rain 19 70 ves dont_go

and windy = yes AT rain 23 80 ves dont_go

Table 12: Pruning the DT from the voyage data

overcast

go dont_go go dont_go

Figure 15: Pruning the DT from the voyage data

3.7.1 Feature-Value

As an example, consider just only two continuous features (X; and X») and two classes (o and
+). Figure 16 shows an example for tests of the following type:

X; op Value

where X; € { X1, X2}, op is an operator in the set {<, >} and Value is a valid feature X or Xo
constant value.

For this sort of test, the description space is partitioned into rectangular regions, namely hy-
perplanes that are orthogonal to the axis of the tested feature and parallel to all other features
axis. This is an important observation since regions produced by decision trees that use such
tests are all hyperrectangles. As the tree is built, more and more regions are added to the space
(solid lines).

41

X2
o O 0O O +
oo ° 7, +
0
s 0 Q) 0] + +
o o O+ | + (a)
900 "4 + ¥ +
0 0 + ++ +
a + + *
5 10 X1
x2] 0 o o] +
0
oo © + (b)
o O
8 0) 0 + +
0 Oo 0++ +
0 0] + +-’r +
0o + + +
5 10 X1
“l 0 00 g 0 o +
00 o o + (c)
8 0 o) 0 + +
0 Oo 0++ +
%00 [F 4+ + +
0 0 + +-|- +
o) L
5 10 X1
X2 7
o 00 g o0 o0 /7+
DRI)
0
8 0 %0 G}) ++ + <4 >4
Q%1 (d)
0g0 + +
0 7+ +
o &+ Lt 7
o/ + + +
5 10 X1

Figure 16: Non-overlapping regions are formed by decision tree in the description space

3.7.2 Linear Combination of Features

Still considering Figure 16, it should be observed that in (d), a simple (dashed line) hypothesis
could better classify those instances. This has motivated building oblique decision trees which
produces non-orthogonal hyperplanes (Breiman et al., 1984, Chapter 5), (Murthy et al., 1994).
In this case, tests are of the following type:

1 X X1+cax Xo+...4+ ¢y X Xy op Value

where ¢; is a constant, X; is a continuous (integer or real) feature, op is an operator in the
set {<,<,>,>} and Value is a constant value. For this sort of test, the description space is
partitioned into non rectangular regions, namely hyperplanes that are not necessarily orthogonal
to the axis.

42

3.8 Summary

The important thing is never to stop questioning.

—Albert Einstein

Induction of decision trees is one of the most widely used learning methods in practice. It can
outperform human experts in many domains. Some of it strengths include it is a fast method
for learning concepts; it is simple to implement; it can convert result to a set of interpretable
rules; mature technology, empirically valid in many commercial products; it can handle noisy
data.

However there are some weaknesses: larger trees are generally difficult to read, even after tree
pruning; it requires fixed—length feature columns; it is non—incremental learning.

Also, univariate (or monothetic) trees which use only one feature at each internal node are
limited to axis—parallel partitions of the description space, limiting the concept that may be
learned. Oblique (or polythetic) trees which can use more than one feature at each internal
node are computationally expensive to induce.

4 Rule Induction

There are many hypotheses in science which are wrong. That's
perfectly all right; they're the aperture to finding out what's right.
Science is a self-correcting process. To be accepted, new ideas must
survive the most rigorous standards of evidence and scrutiny.

—Carl Sagan

As described in the previous section, decision tree induction recursively divides the data into
smaller subsets, trying to separate each class from others. Rule induction, on the other hand,
induces rules directly. In this process each rule covers a subset of instances that belongs to one
specific class.

In general, the Disjunctive Normal Form — DNF — is the most common representation used by
many rule inducers. Thus, a rule is a disjunction of conjunctive conditions. Basically, there are
two sort of rule induction: ordered and unordered which are explained in the following sections.

4.1 Ordered Rule Induction

The induction of ordered rules works in an iterative way, each iteration searching for a <complex>
which covers a large number of instances of a single class C; and few of other classes Cj,j # 1.

Having found a good <complex>, those covered instances that belong to the class C; being
learned (as well as, eventually, other few instances having class Cj, j # i also covered by the
same <complex>) are removed from the training set and the rule “if <complex> then class
= (};” is added to the end of the rule list. This process iterates until no more complexes can be
found.

43

4.1.1 Basic Algorithm

The basic ordered rule induction (or induction of ordered production rules) inducer is described
in Algorithm 7.

Algorithm 7 Ordered rule induction

1: procedure induce_ordered_rules(Instances)

2: Rulelist := {}

3: repeat

4: complex := find_best_conjunction(Instances)

5. if complex # {} then

6: C := most_frequent_class(complex,Instances)

7 Rule := TF complex THEN class = C

8: Rulelist := Rulelist + {Rule}

9: Instances := Instances — {T": T in Instances and satisfies(T",complex)}

10: end if
11: until (Instances = {}) or (complex = {})
12: return Rulelist

4.1.2 An Example

The same example used in Section 3.6 will be used here. For simplicity, the dataset in Table 9
is presented again in Table 13.

Instance No. Outlook Temperature Humidity Windy Voyage?

Ty sunny 25 72 yes £o
15 SULILY 28 91 ves dont_go
T3 sunny 22 70 no £o
Ty sunny 23 95 no dont_go
Ts sunny 30 85 no dont_go
Ts overcast 23 90 yes go
17 overcast 29 78 no £o
T3 overcast 19 65 ves dont_go
Ty overcast 26 75 no go
Tio overcast 20 87 ves go
T rain 22 95 no 2o
T rain 19 70 ves dont_go
113 rain 23 80 ves dont_go
T4 rain 25 81 10 go
Tis rain 21 80 no 2o

Table 13: The voyage data

Table 14 shows a rule list, where R; is the first induced rule, Rs is the second one and so on.
Also positively covered (PC) instances and negatively covered (NC) instances are shown for each
rule. Considering the initial discovered rule R, all instances that satisfy rule conditions and are
in the same class predicted by the rule conclusion — instances T4, T3, T7, Ty, Ty, Th4, T15 — as
well as those instances that satisfy rule conditions but do not belong to the predicted class go
— instances Tho, T13 — are removed by the ordered rule induction algorithm from the training
set and an else is introduced in the rule list before inducing the next rule. After that, the next

44

Rule PC NC

Ry if humidity < 83 then class = go Ty, 15, T7,T1, Ty, T4, T15 112,113
Ry clse if temperature > 23 then class = dont_go Ty, Ty, Ts Ts
RRs clse if outlook = rain then class = go T
R, else class = dont_go Tho

Table 14: The voyage ordered rules

rule is induced by the algorithm and the process goes on. Observe that the last rule Ry is the
default rule, which only fires when none of the previous rules Rj, Ro, R3 fire.

4.1.3 Classifying New Instances

To classify new instances, the ordered rule induction classifier applies an interpretation in which
each rule is tried in order until it is found one whose conditions are satisfied by the new instance
being classified. The resulting class prediction of this rule is then assigned as the class of that
instance. Thus the order of rules is important. If no rule is satisfied, the default rule assigns
the most common class in the training set to the new instance.

4.1.4 Geometric Interpretation

Ordered rules can be seem as a degenerated binary tree, since to classify an unlabeled instance
each rule is tried in order until one fires. As this situation corresponds to an if-then-elsif
statement, the description space can be considered as partitioned into non-overlapping regions
as for decision trees.

4.2 Unordered Rule Induction

The main modification to the ordered rule algorithm is to iterate for each class in turn, but
removing only covered instances of that class when a rule has been found. Thus, unlike for
ordered rules, the instances from classes C}, j # i incorrectly covered by the current <complex>
should remain because now each rule must independently stand against all incorrectly covered
instances. Covered instances having the correct class C; being learned must be removed to stop
repeatedly finding the same rule.

4.2.1 Basic Algorithm

The basic unordered rule inducer is described in Algorithm 8.

4.2.2 An Example

The same example used in the previous section will be used here. Table 15 shows a rule set,
where R is the first induced rule, Ry is the second one and so on. Again, positively covered
(PC) instances and negatively covered (NC) instances are shown for each rule. Considering
the initial discovered rule Rp, instances that satisfy rule conditions and are in the same class
predicted by the rule conclusion — instances 15, 17, 13, Ty — are removed from the training set.

45

Algorithm 8 Unordered rule induction

1: procedure induce_unordered rules(Instances)
2: Ruleset := {}
3: for class C in Instances do

4: Rules_for_one_class := {}

5. repeat

6: complex := find_best_conjunction(Instances,C)

7: if complex # {} then

8: Rules_for_one_class := Rules_for_one_class + {IF complex THEN class = C}

9: Instances := Instances — {T": T in Instances and satisfies(7",complex and class=C)}

10: end if

11: until (Instances = {}) or (complex = {})
12: Ruleset := Ruleset + Rules_for_one_class
13: end for

14: return Ruleset

Rule PC NC
R, if outlook = overcast then class = go Te,T7,Ts,To Tho
Ry if outlook = sunny and humidity > 77 then class = dont_go 15,1y, T5
Rs if temperature > 24 then class = go Ty, 17, Ty, Tha
R, if outlook = rain and windy = no then class = go T11,T14,T15
R5 if outlook = rain and windy = yes then class = dont_go Ty, T13
RG class = £0 Tl, T3, Tg, TQ, T4, T5
T7, Ty, Tho, Ts,T12,T13
Ty1,T14,T15

Table 15: The voyage unordered rules

Observe that instances covered by the rule but that do not belong to the same class predicted
by rule conclusion — instance 1779 — remain in the training set. After that, the next rule is
induced and the process goes on. As in ordered rules, observe that the last rule Rg is the default
rule, which only fires when none of the previous rules Ry, Ra, ... , R5 fire.

4.2.3 Classifying New Instances

To classify a new instance using induced unordered rules, all rules are tried and those which
fire are collected. If more than one class is predicted by fired rules, the usual method used is to
tag each rule with the distribution of covered instances among classes and then to sum these
distributions to find the most probable class. For instance, consider a different example with
three induced rules:

if head=square and hold=gun then class=enemy covers [15,1]
if size=tall and flies=no then class=friend covers [1,10]
if look=angry then class=enemy covers [20,0]

Here the two classes are {enemy,friend} and [15,1] denotes that the rule covers 15 training
instances of enemy and 1 of friend. Given a new instance of a robot which has square head,
carries a gun, tall, non-flying and angry, all three rules are fired. Usually, the unordered rule

46

X2 S
o)
0) o o
o) o] + +
0 0 o: ©
0
0 0 - +
0 0 L0
0 +§ ------------------- -r— -------------- :{_ --------------------------- ;
) Y +o ’
i P+
: + + E
o + | * +
) + ’
2O UUUUURUUROE DY

Figure 17: Overlapping regions are generally formed by unordered rule induction in the descrip-
tion space

algorithm resolves this clash by summing the covered instances [36,11] and then predicting the
most common class in the sum — enemy.

4.2.4 Geometric Interpretation

Inducing unordered rules divides the description space into overlapping regions, since one in-
stance can be covered by more than one rule.

As an example, consider just only two features (X and X9) and two classes (o and +). Figure 17
shows four rules (one for each rectangular region): two rectangles with solid lines which represent
the two rules having <class = o> and two rectangles with dashed lines representing the two
rules having <class = +> . Of course, as in decision trees this division of the description space
corresponds to feature-value tests. For linear combination of features, the description space
division would look non-orthogonal rectangles.

4.3 Summary

Doubt is the father of invention.

—Calileo Galilei

We have presented two basic rule induction algorithms where the order of evaluation of the
rules is relevant (ordered rules) and where there is no implicit order among rules (unordered
rules).

The strengths of rule induction is comprehensibility and low storage requirements. However,
the process of inducing rules is a slower process than inducing decision trees and there are often
many variables to tune.

47

5 Concluding Remarks

| never think of the future. It comes soon enough.

—Albert Einstein

In this work we present basic terms commonly used as well as some concepts that are impor-
tant in the field of Machine Learning, making no assumptions about the reader’s background.
From the several form of learning we concentrate in inductive supervised learning which is the
most researched kind of learning in Artificial Intelligence and has produced many solid results.
Specifically, we concentrate in classification, where the class label of the training examples used
by the ML algorithm are discrete.

After introducing the basic terminology and concepts, we discuss the importance of empirically
evaluating the accuracy of classifiers induced by ML algorithms, and we present some basic
statistical methods to estimate classifiers (or hypotheses) accuracy. Also, several methods to
combine classifiers (ensembles) in order to improve the accuracy obtained by each individual
clagsifier, are discussed in some detail.

Learning algorithms depend on the language in which datasets and background knowledge are
described and the learned concepts are represented. In this work we concentrate in relational
descriptions and discuss practical issues in learning decision trees and if-then rules from feature-
value datasets.

It should be observed that Machine Learning is a powerful tool for overcoming the bottleneck
of knowledge acquisition, and several algorithms have been implemented and also will be imple-
mented in the future. The very basic (but still important) lesson to be learnt is that there is no
algorithm that dominates all others for all problems. The best we can hope for is to understand
the strengths and limitations of different algorithms, and based on background knowledge for a
given domain, make recommendations as to which algorithms to use.

One approach that can work well in practice is to try different algorithms, estimate their accu-
racy, and pick the one with the highest estimated accuracy for a given domain. This method
will work well as long as there are not too many algorithms being tried and when we have
reasons to believe that they are appropriate for the domain.

Acknowledgments: We are grateful to Huei Diana Lee and Jaqueline Brigladori Pugliesi for
helpful comments on a draft of this report.

References

Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining associations between sets of items
in massive databases. In Proceedings of the ACM-SIGMOD International Conference on
Management of Data, pages 207-216, Washington D.C.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large Databases.
http://www.almaden.ibm.com/u/ragrawal /pubs.html.

Baranauskas, J. A. and Monard, M. C. (1998a). Experimental feature selection using the
wrapper approach. In Proceedings of the International Conference on Data Mining, pages
161-170, Rio de Janeiro, RJ. http://www.fmrp.usp.br/~augusto/ps/ICDM98.web.ps.zip.

48

Baranauskas, J. A. and Monard, M. C. (1998b). Metodologias para selecdo de atribu-
tos. Workshop de Teses e Dissertagdes do Simpdsio Brasileiro de Inteligéncia Artificial

(SBIA). http://www.fmrp.usp.br/~augusto/ps/SBIA98.web.ps.zip.
Baranauskas, J. A. and Monard, M. C. (1999). The MLC++ wrapper for fea-

ture subset selection using decision tree, production rule, instance based and sta-

tistical inducers: Some experimental results. Technical Report 87, ICMC-USP.
ftp:/ /ftp.icmc.sc.usp.br/pub/BIBLIOTECA /rel tec/Rt_87.ps.zip.

Baranauskas, J. A., Monard, M. C., and Horst, P. S. (1999b). Evalu-
ation of CN2 induced rules wusing feature selection. Argentine Sympo-
sium on Artificial Intelligence (ASAI/JAIIO/SADIO), pages 141-154.
http://www.fmrp.usp.br/~augusto/ps/ASAI99.web.ps.zip.

Baranauskas, J. A., Monard, M. C., and Horst, P. S. (1999a). Evaluation of feature selec-
tion by wrapping around the CN2 inducer. Encontro Nacional de Inteligéncia Artificial

(ENIA/SBC), pages 315-326. http://www.fmrp.usp.br/~augusto/ps/ENIA99.web.ps.zip.

Batista, G. E. A. P. A. (1997). Um ambiente de avaliacdo de algoritmos de aprendizado de
méquina utilizando exemplos. Dissertacao de Mestrado, ICMC-USP.

Batista, G. E. A. P. A., Carvalho, A. C. P. L., and Monard, M. C. (2000). Applying one-sided
selection to unbalanced datasets. In Proceedings of the Mexican Congress on Artificial
Intelligence (MICAI), Lecture Notes in Artificial Intelligence. Springer-Verlag. (in print).

Batista, G. E. A. P. A. and Monard, M. C. (1998). Descri¢do da implementacdo dos métodos
estatisticos e de resampling do ambiente AMPSAM. Technical Report 68, ICMC-USP.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants. Machine Learning, 36:105-142.

Bayardo, R. J. and Agrawal, R. (1999). Mining the most interesting rules. In Proceed-
ings of the 5th International Conference on Knowledge Discovery and Data Mining.
http://www.almaden.ibm.com/u/ragrawal /pubs.html.

Blake, C., Keogh, E., and Merz, C. J. (1998). UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples in machine
learning. Artificial Intelligence, pages 245-271.

Bratko, I. (1990). Prolog Programming for Artificial Intelligence. Addison—Wesley.

Breiman, L. (1996a). Arcing classifiers. Technical report, Statistics Department, University
of California, ftp://ftp.stat.berkeley.edu/pub/users/breiman/.

Breiman, L. (1996b). Bagging predictors. Machine Learning, 24(2):123-140.

Breiman, L. (1996¢). Bias, variance and arcing classifiers. Technical Report 460, Statistics
Department, University of California.

Breiman, L. (1996d). The heuristics on instability in model selection. Technical report, Statis-
tics Department, University of California, ftp://ftp.stat.berkeley.edu/pub/users/breiman/.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification and Regression
Trees. Wadsworth & Books, Pacific Grove, CA.

Caulkins, C. W. (1999). Aquisicdo de conhecimento utilizando aprendizado de méquina rela-
cional. Exame de Qualificacdo de Mestrado, ICMC-USP.

49

Clark, P. and Boswell, R. (1991). Rule induction with CN'2: Some recent improvements.
In Kodratoff, Y., editor, Proceedings of the 5th European Conference (EWSL 91), pages
151-163. Springer-Verlag.

Clark, P. and Niblett, T. (1987). Induction in noise domains. In Bratko, I. and Lavra¢, N.,

editors, Proceedings of the Second Furopean Working Session on Learning, pages 11-30,
Wilmslow, UK. Sigma.

Clark, P. and Niblett, T. (1989). The CA2 induction algorithm. Machine Learning, 3(4):261-
283.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115-123, San Francisco, CA. Morgan Kaufmann.

Dietterich, T. G. (1997a). Machine learning research: Four current directions.
ftp://ftp.cs.orst.edu/pub/tgd/papers.

Dietterich, T. G. (1997b). Statistical tests for comparing supervised classification learning
algorithms. ftp://ftp.cs.orst.edu/pub/tgd/papers.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chapman & Hall.

Felix, L. C. M., Rezende, S. O., Doi, C. Y., de Paula, M. F., and Romanato, M. J. (1998).
MLC++ biblioteca de aprendizado de maquina em C++. Technical Report 72, ICMC-USP.
ftp:/ /ftp.icme.sc.usp.br/pub/BIBLIOTECA /rel tec/Rt_72.ps.zip.

Flach, P. (1994). Simply Logical: Intelligent Reasoning by Examples. John Wiley & Sons Ltd.

Freedman, D., Pisani, R., and Purves, R., editors (1998). Statistics, Third edition. W. W.
Norton & Company, third edition edition.

Freitas, A. A. (1998a). A multi-criteria approach for the evaluation of rule interestingness. In
Proceedings of the International Conference on Data Mining, pages 7-20, Rio de Janeiro,
RJ.

Freitas, A. A. (1998b). On objective measures of rule surprisingness. In Principles of Data
Mining €& Knowledge Discovery: Proceedings of the Second European Symp. Lecture Notes
in Artificial Intelligence, volume 1510, pages 1-9.

Freund, Y. and Schapire, R. E. (1995). A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the Second European Conference on
Computational Learning Theory, pages 23—-37. Springer-Verlag.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning, pages 123—
140, Lake Tahoe, California. Morgan Kaufmann.

Horst, P. S. (1999). Avaliacdo do conhecimento adquirido por algoritmos de aprendizado de
maquina utilizando exemplos. Dissertacdao de Mestrado, ICMC-USP.

John, G., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset selection
problem. In Kaufmann, M., editor, Proceedings of the Tenth International Conference on
Machine Learning, pages 167-173, San Francisco, CA.

KDD (1995). Proceedings of the First International Conference on Knowledge Discovery and
Data Mining (KDD-95), Menlo Park, CA. American Association for Artificial Intelligence.

Kearns, M. J. and Vazirani, U. V., editors (1994). An Introduction to Computational Learning
Theory. Ellis Horwood.

50

Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods and
a new algorithm. In Tenth National Conference on Artificial Intelligence, pages 129-134.
MIT Press.

Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., and Verkamo, A. 1. (1994).
Finding interesting rules from large sets of discovered association rules. Third Internationa
Conference on Information and Knowledge Managmente, 30:401-407.

Kohavi, R. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97:273-324.

Kohavi, R. and Sommerfield, D. (1995). Feature subset selection using the wrapper model:
Overfitting and dynamic search space topology. In (KDD, 1995), pages 192-197.

Kohavi, R., Sommerfield, D., and Dougherty, J. (1994). MLC++: A Machine Learning Li-
brary in C++. IEEE Computer Society Press.

Kohavi, R., Sommerfield, D., and Dougherty, J. (1996). Data mining using MLC++: A
machine learning library in C++. Tools with Artificial Intelligence, pages 234-245.

Kubat, M., Bratko, 1., and Michalski, R. S. (1998a). A Review of Machine Learning Methods,
pages 3-69. In (Michalski et al., 1998).

Kubat, M., Holte, R. C., and Matwin, S. (1997). Learning when negative examples abound:
One-sided selection. In Proceedings of the European Conference on Machine Learning
(ECML), pages 146-153. Springer-Verlag.

Kubat, M., Holte, R. C., and Matwin, S. (1998b). Machine learning for detection of oil spills
in satellite radar images. Machine Learning, 30:195-215.

Kubat, M. and Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-
sided sampling. In Proceedings of the Fourteenth International Conference on Machine
Learning, pages 179-186, San Francisco. Morgan Kaufmann.

Langley, P. (1996). Elements of Machine Learning. Morgan Kaufmann Publishers, Inc.

Lee, H. D. (2000). Selecao e construcao de features relevantes para o aprendizado de maquina.
Dissertacao de Mestrado, ICMC-USP.

Lee, H. D., Monard, M. C., and Baranauskas, J. A. (1999). Empirical comparison of wrap-
per and filter approaches for feature subset selection. Technical Report 94, ICMC-USP.
ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA /rel_tec/Rt_94.ps.zip.

Margineantu, D. D. and Dietterich, T. G. (1997). Pruning adaptive boosting. In Proceedings
of the Fourteenth International Conference on Machine Learning, pages 211-218, San
Francisco. Morgan Kaufmann.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Artificial Intelli-
gence, 20:111-161.

Michalski, R. S., Bratko, 1., and Kubat, M., editors (1998). Machine Learning and Data
Mining Methods and Applications. John Wiley & Sons Ltd., West Sussex, England.

Michalski, R. S. and Kaufman, K. A. (1998). Data Mining and Knowledge Discovery: A
Review of Issues and a Multistrategy Approach, pages 71-112. In (Michalski et al., 1998).

Michie, D. (1988). Machine learning in the next five year. In Proceedings of the Third European
Working Session on Learning EWSL-88, Glasgow, London, Pitman.

Michie, D., Spiegelhalter, D. J., and Taylor, C. C., editors (1994). Machine Learning, Neural
and Statistical Classification. Ellis Horwood.

Mitchell, T. M. (1998). Machine Learning. McGraw-Hill.

o1

Morik, K., Wrobel, S., J Knowledge Acquisition and Machine Learning: Theory, Methods,
and Applications. Harcourt Brace & Company, Publishers.

Moses, L. E., editor (1986). Think and Explain with Statistics. Addison—Wesley.

Muggleton, S. H. and Raedt, L. D. (1994). Inductive logic programming. The Journal of Logic
Programming, 19-20:629-679.

Murthy, S. K., Kasif, S., and Salzberg, S. L. (1994). A system for induction
of oblique decision trees. Journal of Artificial Intelligence Research, 2(1):1-32.
http://www.cs.jhu.edu/~salzberg/jair94.ps.

Prati, R. C., Baranauskas, J. A., and Monard, M. C. (1999). BiBViEw: Um sistema para
auxiliar a manutencao de registros para o BIBIRX. Technical Report 95, ICMC-USP.
ftp:/ /ftp.icme.sc.usp.br/pub/BIBLIOTECA /rel tec/Rt_95.ps.zip.

Quinlan, J. R. (1988). C4.5 Programs for Machine Learning. Morgan Kaufmann, CA.

Quinlan, J. R. (1990). Learning logical definition from relations. Machine Learning, 5:239—
266.

Quinlan, J. R. (1996). Bagging, boosting and C4.5. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 725-730. American Association for Artificial
Intelligence.

Rathjens, D. (1996). MineSet™ User’s Guide. Silicon Graphics, Inc.
Russel, S. and Norvig, P. (1994). Artificial Intelligence: A Modern Approach. Prentice Hall.

Salzberg, S. L. (1995). On comparing classifiers: A critique of current research and methods.
Technical Report JHU-95/06, Department of Computer Science, Johns Hopkins Univer-
sity. http://www.cs.jhu.edu/~salzberg/critique.ps.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197-227.

Simon, H. (1983). Why should machines learn? In Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M., editors, Machine learning: An Artificial Intelligence Approach, volume 1.
Morgan Kaufmann.

Sterling, L. and Shapiro, E. (1994). The Art of Prolog, 2nd edition. The MIT Press.

Weiss, S. M. and Indurkhya, N. (1998). Predictive Data Mining: A Practical Guide. Morgan
Kaufmann, San Francisco, CA.

Weiss, S. M. and Kulikowski, C. A. (1991). Computer Systems that Learn. Morgan Kaufmann,
San Mateo, CA.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5:241-259.

52

