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Abstract. Many classification problems, especially in the field of bioinformat-
ics are associated with more than one class, known as multi-label classification
problems. In this study we propose a new adaptation for the Binary Relevance
method taking into account the correlation among labels, focusing on the in-
terpretability of the model, not only its performance. The experimental results
shown that our proposal has a performance comparable to other methods as the
same time it provides an interpretable model from the multi-label problem.

1. Introduction
Since the advance of hardware and software, the automated sequencing of DNA fragments
became possible. The amount of biological data available is increasing, which increases
also the need for computational tools for processing and knowledge extraction. As a
result, machine learning techniques are widely used to predict gene functions; then the
best predictions can be tested in the lab to validate these results [Schietgat et al. 2010].
However, the prediction of gene function is complex considering the fact a single gene can
have multiple functions. In this case, multi-label classification seems to be appropriated.

There are several reasons to investigate and propose new multi-label classification
techniques, especially in bioinformatics or bio-related research fields. For example, the
Gene Ontology1 is an example of a multi-label problem, in which genes and proteins
may have more than one function or feature. Another example is the MIPS Functional
Catalogue [Ruepp et al. 2004], in which genes and proteins can belong to more than one
functional class. Therefore, the research and development of computational techniques to
classify multi-label problems using proteins, genes and other biological and medical data
is very important: with this knowledge one can develop new drugs, treat diseases, help in
diagnostics and among other purposes.

However, traditional algorithms are unable to handle a set of multi-label instances,
since these algorithms were designed to predict a single label. A simpler solution is
to transform the original dataset into a set of instances in which each set contains all
attributes, and only one of the labels to be predicted, the method known as Binary
Relevance (BR). However, studies have shown that this approach is not a good solu-
tion [Clare and King 2001, Suzuki et al. 2001], since each label is treated individually, ie,
generates one classifier for each label ignoring the correlations between them. Intuitively,
an algorithm that finds a classifier to more than one label, can capture some correlations
between them and find a classifier more simple (for example, a smaller number of rules).
Because of this problem, it is important to develop techniques that use the method Binary
Relevance but they can capture the correlations between the labels.

1http://www.geneontology.org/
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The purpose of this study is to present a new adaptation of the method Binary
Relevance using decision trees to treat multi-label problems. Decision trees are symbolic
learning models that can be analyzed as set of rules, in order to improve the understanding
of the knowledge extracted. For this reason, the method proposed here was designed to
capture correlations between labels, a feature Binary-Relevance doesn’t take into account,
and consequently upgrade the ability to generalize. Furthermore, our proposal also takes
into account the interpretability not only the performance, then our proposal tries to reduce
the number of induced trees for expert interpretation, in the best hypothesis build only one
model that classifies all labels.

This work is organized as follows: Section 3 presents the basic concepts of multi-
label classification. Section 2 describes some related studies in the literature. Section 4
presents our multi-label learning algorithm. Section 5 describes the experimental method-
ology, results and discussion. Finally, Section 6 presents the conclusions from this study.

2. Related Work

Different techniques have been proposed in the literature for treating multi-label classifi-
cation problems. In some of them single-label classifiers can be combined to treat multi-
label classification problems. Other techniques modify single-label classifiers, changing
their algorithms to allow using them in multi-label problems.

In [Cherman et al. 2010] is proposed a method BR + which is an extension of the
method BR in which considers the relationship between the labels and is also constructed
c binary classification problems analogously to BR. The difference are in descriptors at-
tributes that have all attributes X and contains all the labels as descriptors, except the own
label to be predicted.

In [Clare and King 2001] presents a study using decision trees for hierarchical
multi-label classification to analyze information of S. cerevisiae and try to predict new
gene functions. To analyze these data, resampling strategies were developed and modified
the algorithm C4.5.

In [Alves et al. 2008] is proposed approach called MHCAIS (Multi-label Hierar-
chical Classification with an Artificial Immune System) is a adapted algorithm for multi-
label and hierarchical classification. The first version of MHCAIS build a global classifier
to predict all labels, while the second version of a building one classifier for each label.
In both versions the classifier is expressed as a set of IF-THEN rules, which has the ad-
vantage of represent knowledge understandable to users biologists.

In [Blockeel et al. 1998] a tool called Clus uses concepts from Predictive Cluster-
ing Trees (PCT). Decision trees are constructed where each node corresponds to a group
of instances from the dataset. PCT is a clustering approach that adapts the basic top-down
induction of decision trees for clustering. The procedure used for the construction of PCT
is similar to other induction algorithms of decision trees such as C4.5 [Quinlan 1993] or
CART [Breiman et al. 1984].

In [Blockeel et al. 2006], Clus-HMC refers to the use of Clus as a multi-label hier-
archical classification system that learns a tree to classify all labels and Clus-SC generates
one decision tree for each label.
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3. Multi-Label Classification
Basically, the classification task is to discover knowledge that can be used to predict
the class of an instance, whose class is unknown, based on the values of the attributes
that describe such an instance. In this sense there are two versions of the classification
task, according to the number of labels to be predicted for each instance: (a) Single-
label Classification and (b) Multi-label Classification. Single-label classification refers to
the classification task, where there is only one label (the target concept) to be predicted.
The basic principles of multi-label classification are similar to single-label classification,
however the multi-label classification have two or more concept labels to be predicted. In
the case of symbolic models expressed as rules, a multi-label classification rule contains
two or more conclusions, each one involving a different label.

Let X be the domain of instances to be classified, Y be the set of labels, and H be
the set of classifiers for f : X → Y , where f is unknown. The goal is to find the classifier
h ∈ H maximizing the probability of h(x) = y, where y ∈ Y is the ground truth label of
x [Shen et al. 2004].

Table 1 shows the attribute-value representation modified to deal with multi-label
problems. A dataset is characterized by N instances z1, z2, . . . , zN , each containing m
attributes X1, X2, . . . , Xm and c labels Y1, Y2, . . . , Yc . On this table, the row i refers to
the i-th instance (i = 1, 2, . . . , N ); the entry xij refers the value of j-th attribute (j =
1, 2, . . . ,m) of instance i and output yik refers to the value of k-th label (k = 1, 2, . . . , c)
of instance i.

Table 1. Set of instances in the format attribute-value for multi-label problems

X1 X2 · · · Xm Y1 Y2 · · · Yc

z1 x11 x12 · · · x1m y11 y12 · · · y1c
z2 x21 x22 · · · x2m y21 y22 · · · y2c
...

...
...

. . .
...

...
...

. . .
...

zN xN1 xN2 . . . xNm yN1 yN2 · · · yNc

As can be seen, instances are tuples ~zi = (xi1, xi2, . . . , xim, yi1, yi2, . . . , yic) =
(~xi, ~yi) also denoted by zi = (xi, yi), where it is implicit the fact that zi, xi and yi are
vectors. It is observed that each yi is a member of the set Y1 × Y2 × . . . × Yc, and
Yi ∈ {0, 1}, ie each label has two classes.

4. The BR-CT Methodology
Before introducing our algorithm, some notation is necessary:

• D: the full dataset with all attributes and labels {X1, . . . , Xc, Y1, . . . , Yc};
• Dl: the labels dataset, defined as Dl ≡ D\{X1, . . . , Xm};
• Da: the attributes dataset, where Da ≡ D\{Y1, . . . , Yc};
• Di

l : an specific labels dataset, defined as Di
l ≡ {Y1, . . . , Yi−1, Yi+1, . . . , Yc} ∪

{Yi}, where {Y1, . . . , Yi−1, Yi+1, . . . , Yc} represents learning attributes and {Yi}
the target class;
• Di

a: a dataset containing all attributes and the label Yi that represents a target class,
defined as Di ≡ Da ∪ {Yi};
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• Rt
j: j-th rule from tree t, where Rt

j ≡ Bt → Et, the logic implication (if Bt then
Et).

The methodology to deal with multi-label problems proposed here can be seen on
Algorithm 1. It can be divided into three steps. The first step (Lines 3-10), performs the
induction of c decision trees, taking into account only the labels (Line 4). In this situation,
for each label Yi (i = 1, . . . , c) a decision tree Ai is induced, using as attributes the c− 1
remaining labels (Y1, . . . , Yi−1, Yi+1, . . . , Yc) and the label Yi as the target label. After
that, the c decision trees were used to generate a graph G containing initially c nodes
where each node i represent the label Yi. For each Ai, an edge connecting labels Yi and
Yj is added to G if labels Yi and Yj are connected in Ai (Line 7). Figure 1(a) shows an
example on how the graph is built from a set of trees A1, . . . , A4.

This step tries to find groups of related labels, being represented by a connected
component in G. Let us denote C(G) the number of connect components in graph G. At

Algorithm 1 Binary Relevance with Correlation Labels - BR-CL
Require: multi-label dataset D containig m attributes X1, . . . , Xm and c labels Y1, . . . , Yc

Ensure: ExtendedTrees
1: G← {Y1, . . . , Yc}
2: Extended← ∅
3: for i← 1 to c do
4: Ai ← BuildDecisionTree(Di

l )
5: for w ← 1 to c do
6: if Yw ⊂ Ai then
7: G← G ∪ {(Yi, Yw)}
8: end if
9: end for

10: end for
11: for i← 1 to c do
12: Ti ← BuildDecisionTree(Di

a)
13: S ← Ai

14: T ′i ← Ti

15: loop
16: SR← SelectAllRules(S), where E

T ′
i

j = ES
k

17: RT ′
i ← BuildRules(SR), in form B

T ′
i

j → E
T ′
i

j ∧BS
k

18: L(RT ′
i )← calculate laplace of RT ′

i

19: Ω← select the rule with the largest L(RT ′
i ) precision

20: Extended← Extended ∪{Y1, Yi−1, Yi+1, . . . , Yc} ∩ Ω
21: T ′i ← T ′i∪ Extended
22: if There are labels to be considered from {Y1, . . . , Yi−1, Yi+1, . . . , Yc} then
23: SL← select one label y considering the best accuracy of Ay from Extended
24: S ← ASL

25: else
26: exit loop
27: end if
28: end loop
29: end for
30: ExtendedTrees← ∅
31: for j ← 1 to C(G) do
32: ExtendedTrees← ExtendedTrees ∪ {select T ′i with the best HammingLoss}
33: end for
34: return ExtendedTrees
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the end of this step, there are three possible situations: (1) C(G) = 1, all labels are related
to each other, and therefore there is only one connected component in G that contains all
the labels; (2) C(G) = c, no labels are related to each other, then G contains c connected
components; and (3) 1 < C(G) < c, there is some relationship between some labels.

In the second stage (Lines 11-29) is carried out the induction of tree Ti, but taking
into account all attributes X1, . . . , Xm and just one label Yi at a time (Line 12). After that,
each decision tree Ti is extended (Line 15), i.e., a process is performed in order that each
tree Ti can predict more than one label. Is used the connected component of G in which
contains the node Yi since the tree Ti is related to the label Yi whereas it is the label to be
predicted by Ti. This results in new trees T ′i that have a list of labels at each leaf node, that
is, if all labels are correlated (first case above) then the tree will be extended to include
all the labels on its leaves. If there are two or more connected component (third case), the
tree is extended only for labels that are part of its component in G. For that, firstly the
tree Ai is selected to start the extension S for tree Ti, where S ← Ai (Line 13).

For each rule j in Ti, a rule is created up to the root level of the tree. For each
rule j from Ti are then selected all k rules S, where ETi

j = ES
k (Line 16). After that, all

k rules RTi
k are built in logical form RTi

k ≡ BTi → ETi ∧ BS (Line 17), i.e., premise and
conclusion of k-th rule of Ti are united with premise of rule S.

Then, it is calculated laplace precision metric (Line 18) for all de rules RTi
k to

find which rule is more accurate. After that, a best rule is selected with the largest
laplace value, this rule will be used to extend the rule j of the tree Ti (Line 19). The
Laplace 1 [Clark and Niblett 1989] is defined in (1), where N(B → E) is the number
of instances satisfying premise and conclusion, N(B) is the number of instances which
satisfies only the premise, and k̂ is the number of classes in the domain of Yi. In our
experiments, since Yi ∈ {0, 1} then k̂ = 2:

L(R
T ′
i

k ) =

∑N
i=1 N(B → E) + 1∑N

i=1N(B) + k̂
(1)

Figure 1(b) shows how the extension a tree is performed, where the computation
of laplace values is done for each RTi

k , choosing the largest value, as mentioned earlier.
The example shows how extend the first rule in tree T1.

If not all labels have been extended from Ti components (Line 22), then the pro-
cess continues the extension on other tree. This tree is selected considering only the trees
in Extended, where Extended is a subset from {A1, . . . , Ai−1, Ai+1, . . . , Ac}. Only if Yi

appeared in the rule selected then Ai is considered as a part of Extended (Line 24). Oth-
erwise if the extension of the tree Ti is finish (Line 26) the loop is exited.

In the third stage (Lines 30-33) occurs the selection of the tree with lower Ham-
mingLoss rate per component(Line 32). This step allows you to select the best tree for
each component and thus decrease the number of trees to be analyzed since the result of
the algorithm shows only C(G) trees, each of which is the best tree by component.
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Figure 1. Figure 1(a) shown the transformation of trees Ai (left) in graph G (right)
and Figure 1(b) shown a extending Tree T1

5. Experimental Metodology

5.1. Experimental Setup

The datasets used in experiments reported here are from the functional genomic field, are
available from Catholic University of Leuven2 related to Saccharomyces cerevisiae. Were
considered 16 labels in the experiments which are structured hierarchically according
to the catalog developed by MIPS Funcat [Mewes et al. 2004] available on 24/04/20023,
considering only the first level of the hierarchy.

A pre-processing of datasets was necessary to transform them into non-
hierarchical data. In this case, instead a hierarchical attribute-class, a binary vector was
created in which each position corresponds to a main category contained in the class of
hierarchical dataset. Then each instance was transformed from hierarchical class to non-
hierarchical considering only the first level of the hierarchy.

The experiments reported were performed using the Weka li-
brary [Witten and Frank 1999]. In the proposed method, the decision trees were
based on the algorithm J48 [Quinlan 1993] with default settings. We have eval-
uated our algorithm as well as five other methods from the Mulam library:
Binary Relevance, Label Powerset [Tsoumakas et al. 2010], RAkEL (RAndom
k-labELsets) [Tsoumakas and Vlahavas 2007], MLkNN (Multi-Label k-Nearest
Neighbours) [Zhang and Zhou 2007] and BPMLL (Back-Propagation Multi-Label
Learning) [Zhang 2006].

The method Label Powerset is based on a combination of more than one label
to create a new label, but the number of labels can increase considerably and some may
end up with a few instances. The method RAkEL constructs a ensemble of LP classifiers
and each classifier is trained with a small subset of random k labels. The algorithm ML-
KNN is based on the kNN algorithm: for each test instance, its k nearest neighbors in
the training set are identified then, according to statistical information gained from the
label sets of these neighboring instances, maximum a posteriori principle is utilized to
determine the label set for the test instance. The algorithm BPMLL is an adaptation of

2http://dtai.cs.kuleuven.be/clus/hmc-ens/
3http://www.aber.ac.uk/ dcswww/Research/bio/dss/yeastpreds/yeast/classes.txt
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the popular algorithm back-propagation for multi-label learning, the main modification of
this algorithm is the introduction of a new error function that considers multiple labels.

For methods BR, LP and RAkEL the algorithm J48 was used with minimal num-
ber of objects equals 2, no binary split and no pruning method settings and for methods
MLkNN and BPMLL the default settings was used too. Another method includes Clus
with reduce variance as heuristic, no binary split, no pruning method and minimal weight
equals 2.

Moreover, in the course of research and development methodology first it was
decided to select one tree by component, being one with better accuracy and then extend
only those selected; however, a preliminary test carried out with a simple dataset showed
not necessarily the tree selected get the best HammingLoss if all the trees were extended
before selecting. Therefore, to statistically analyze these two possibilities were tested
both options, BR-CTa for which the selection is made before the extension and BR-CTb
for which the selection is made after the extension.

To analyze the performance 10-fold cross-validation was performed for each
method and each dataset, recording the metrics HammingLoss (2) and F-measure de-
scribed previously. To analyze significant results the Friedman test [Friedman 1940] was
used, considering a significance level of 5%, and the Benjamini-Hochberg as the post-hoc
test [Benjamini and Hochberg 1995].

HammingLoss(h, t) =
1

|N |
×

N∑
i=1

|yi∆ŷi|
|Y |

(2)

5.2. Results and Discussion

The results of HammingLoss measure and F-measure are shown on Tables 2 and 3, re-
spectively. It is also shown the rank of each approaches (between curly brackets), and the
average rank obtained by the Friedman test considering a significance level of 5%.

Table 2. HammingLoss

Dataset BR-CT BR LP RAkEL MLkNN BKMLL Clus

derisi 0.098(2.5) 0.100(4.0) 0.134(6.0) 0.1085(.0) 0.098(2.5) 0.173(7.0) 0.032(1.0)
seq 0.107(4.0) 0.116(6.0) 0.129(7.0) 0.105(3.0) 0.097(2.0) 0.110(5.0) 0.028(1.0)
pheno 0.101(5.0) 0.097(1.5) 0.116(6.0) 0.097(1.5) 0.099(4.0) 0.203(7.0) 0.098(3.0)
gasch2 0.113(4.5) 0.107(3.0) 0.135(7.0) 0.109(6.0) 0.100(2.0) 0.113(4.5) 0.046(1.0)
expr 0.112(4.0) 0.120(6.0) 0.134(7.0) 0.108(3.0) 0.101(2.0) 0.113(5.0) 0.032(1.0)
church 0.112(5.0) 0.105(3.0) 0.133(6.5) 0.107(4.0) 0.103(2.0) 0.113(6.5) 0.061(1.0)
gasch1 0.113(4.5) 0.126(6.0) 0.133(7.0) 0.111(3.0) 0.099(2.0) 0.113(4.5) 0.036(1.0)
cellcycle 0.115(5.0) 0.117(6.0) 0.140(7.0) 0.111(3.0) 0.102(2.0) 0.113(4.0) 0.044(1.0)
spo 0.112(5.0) 0.108(3.0) 0.141(7.0) 0.111(4.0) 0.102(2.0) 0.113(6.0) 0.036(1.0)
eisen 0.119(4.0) 0.120(5.0) 0.132(7.0) 0.106(3.0) 0.094(2.0) 0.126(6.0) 0.036(1.0)

Average Rank 4.450 4.350 6.800 3.350 2.250 5.600 1.200

Considering HammingLoss, it is possible to note Clus had the best average rank,
and the BR-CT had the fifth best rank, but almost the same performance as the BR. In the
context of F-measure the algorithm with the best average rank was Clus too, and BR-CT
had the second best rank.
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Table 3. F-measure
Dataset BR-CT BR LP RAkEL MLkNN BPMLL Clus

derisi 0.402(4.0) 0.417(2.0) 0.372(6.0) 0.384(5.0) 0.405(3.0) 0.482(2.0) 0.869(1.0)
seq 0.517(2.0) 0.457(4.0) 0.412(6.0) 0.495(3.0) 0.435(5.0) 0.001(7.0) 0.885(1.0)
pheno 0.394(1.5) 0.394(1.5) 0.377(4.0) 0.149(7.0) 0.356(5.0) 0.268(6.0) 0.387(3.0)
gasch2 0.461(2.0) 0.424(4.0) 0.387(6.0) 0.428(3.0) 0.409(5.0) 0.001(7.0) 0.839(1.0)
expr 0.457(2.0) 0.429(3.0) 0.389(6.0) 0.420(5.0) 0.422(4.0) 0.001(7.0) 0.857(1.0)
church 0.395(3.0) 0.353(6.0) 0.402(2.0) 0.390(4.0) 0.369(5.0) 0.001(7.0) 0.689(1.0)
gasch1 0.462(2.0) 0.422(4.0) 0.4056(.0) 0.459(3.0) 0.421(5.0) 0.001(7.0) 0.867(1.0)
cellcycle 0.465(2.0) 0.426(4.0) 0.373(6.0) 0.444(3.0) 0.403(5.0) 0.001(7.0) 0.838(1.0)
spo 0.392(4.0) 0.379(5.0) 0.372(6.0) 0.398(3.0) 0.407(2.0) 0.001(7.0) 0.874(1.0)
eisen 0.452(6.0) 0.498(4.0) 0.473(5.0) 0.543(2.0) 0.515(3.0) 0.001(7.0) 0.877(1.0)

Average Rank 2.950 3.850 5.400 3.900 4.300 6.400 1.200

Table 4. Number of Leaves

Conjunto de exemplos BR-CTa BR-CTb Clus

derisi 7 7 1462
seq 90 16 1420
pheno 12 12 13
gasch2 62 22 1252
expr 62 4 1172
church 21 15 965
gasch1 80 76 1218
cellcycle 80 32 1233
spo 72 65 1396
eisen 87 55 771

In Table 4 is shows the number of leaves (rules) results of BR-CTa, BR-CTb and
Clus methods. Analyzing the table we can see that the number of leaves of the tree
resulting of Clus method is far superior against the number of leaves generated by the set
of trees of the proposed method (BR-CTa and BR-CTb). So, although the method Clus has
best performance, the BR-CT methods builds smaller trees facilitating its interpretability.

The result of post-hoc test is shown on Table 5 considering HammingLoss and
F-measure metrics, in which symbol M (N) means that the BR-CT is better (significantly)
than the classifier at the row whereas the symbol O (H) means that BR-CT is worse
(significantly) than the classifier at the row.

As can be seen, taking into account the HammingLoss our proposal had a good
performance in regard LP (significantly) and BPMLL, and had a bad performance with

Table 5. Benjamini-Hochberg post-hoc Test - BR-CT versus all

HammingLoss F-measure

BR O M
LP N N
RAkEL O M
MLkNN H M
BPMLL M N
Clus H O
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BR, RAkEL, MLkNN and Clus being significantly in the last two. Otherwise taking
into account the F-measure our proposal had a good performance against all approaches
except for Clus, and two of which are significantly better (LP and BPMLL). But our
methodology takes into account the comprehensiveness not only the performance, and
the MLkNN can not be interpreted by the specialist and the model generated by Clus has
a high complexity, as they usually are very large, which can be seen in Table 4.

6. Conclusions
In this paper a study of multi-label classification problem has been conducted. In such
kind of problem, there is more than one label to be predicted, i.e., an instance may be
related to more than one label at the same time making the classification task more dif-
ficult. In order to improve performance and comprehensibility of the extracted model,
in this study we had proposed an adaptation for Binary Relevance method in order to
overcome the BR disadvantage: we consider the correlations between the labels and thus
this may improve the generalization of the model induced, and possibly may decrease the
number of classifiers to be analyzed. When all labels are correlated, our proposal finds
a single classifier (decision tree) that can classify all labels. When labels as uncorrelated
the output model of our proposal will be equal to BR (one decision tree for each label).

Experiments have been conducted to compare the performance of our proposal
against other approaches found in the literature. Results allow us to conclude our proposal
has performance comparable to other methods, obtaining nice results using F-measure
and average results using HammingLoss. Since the main concern of our research group
embraces human interpretability in the induced models, then regardless of the method
Clus always get better performance than the proposal, it generates trees of large size in
comparison with the proposed method.
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