
Combining symbolic classifiers from multiple inducers

José Augusto Baranauskas*, Maria Carolina Monard

Laboratory of Computational Intelligence, Department of Computer Science and Statistics, Institute of Mathematics and Computer Sciences,

University of São Paulo, Av. Trabalhador Socarlense, 400 P.O. Box 668, Sao Carlos, Sao Paulo 13566-590, Brazil

Received 8 August 2001; accepted 4 February 2002

Abstract

Classification algorithms for large databases have many practical applications in data mining. Whenever a dataset is too large for a

particular learning algorithm to be applied, sampling can be used to scale up classifiers to massive datasets. One general approach associated

with sampling is the construction of ensembles. Although benefits in accuracy can be obtained from the use of ensembles, one problem is

their interpretability. This has motivated our work on trying to use the benefits of combining symbolic classifiers, while still keeping the

symbolic component in the learning system. This idea has been implemented in the XRULER system. We describe the XRULER system, as

well as experiments performed to evaluate it on 10 datasets. The results show that it is possible to combine symbolic classifiers into a final

symbolic classifier with increase in the accuracy and decrease in the number of final rules.

q 2002 Elsevier Science B.V. All rights reserved.

Keywords: Combining classifiers; Machine Learning; Data Mining

1. Introduction

Usual approaches for developing a knowledge base

involve a manual formalization of expert’s knowledge and

encoding it in appropriate data structures. One important

application of Machine Learning (ML) concerns the (semi)

automatic construction of knowledge bases through induc-

tive inference. Indeed, ML can provide an improvement of

current techniques and a basis for developing alternative

knowledge acquisition approaches.

One challenge in predictive Data Mining (DM) is to

exploit and combine existing ML algorithms effectively.

However, not all ML algorithms are designed to deal with

big data, an important issue in DM.

One solution to this problem is to take several samples

from the database inducing knowledge using these samples

as input to any ML algorithm. After that, it is possible to use

the ensemble approach to classify new instances [5,9].

Although benefits in accuracy can be obtained from the use

of ensembles, one problem is their interpretability, since

combining symbolic classifiers into one single classifier by a

majority (or other) vote mechanism does not result into a

symbolic classifier, i.e. an ensemble of symbolic classifiers

is no longer symbolic. In this context, a symbolic classifier

is the one that can be transformed into a set of rules.

In our work, we are interested in interpretability, i.e. our

main concern is not only related to the correct classification

of new instances, but also with explaining the user the

reasons of classifying a new instance into one of the possible

classes. In other words, we are interested in symbolic

classifiers, specifically in classifiers that can be transformed

into a set of rules.

In this work, we propose and describe the XRULER

system that can be used to combine symbolic knowledge

extracted from different samples using different inducers.

The main idea is to transform each symbolic classifier into a

standard if– then rule format before trying to merge the

classifiers into a final one. These ideas are currently being

implemented in the DISCOVER project, a under develop-

ment computational environment designed as a generic

knowledge discovery tool for DM research.

This work is organized as follows. Section 2 introduces

the notation and definitions used in the remaining text.

Section 3 provides a description of the XRULER system,

including the basic cover algorithm, criteria for choosing the

best rule, as well as classifying new instances. Section 4

outlines the experimental setup used to evaluate the

XRULER system and Section 5 reports the experimental

results and discussion. Finally, Section 6 presents some

concluding remarks.

0950-7051/03/$ - see front matter q 2002 Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -7 05 1 (0 2) 00 0 21 -7

Knowledge-Based Systems 16 (2003) 129–136

www.elsevier.com/locate/knosys

* Corresponding author.

E-mail addresses: augusto@fmrp.usp.br (J.A. Baranauskas);

mcmonard@icmc.usp.br (M.C. Monard).

http://www.elsevier.com/locate/knosys

2. Definitions and notation

A dataset T is a set of n classified (labeled) instances,

each of them containing m features. A row i refers to the ith

instance ði ¼ 1; 2;…; nÞ and column entries xij refer to the

value of the jth ðj ¼ 1; 2;…;mÞ feature Xj of instance i. As

can be seen, instances are tuples Ti ¼ ðxi1; xi2;…; xim; yiÞ ¼

ð~xi; yiÞ also referred as ðxi; yiÞ being implicitly assumed that

xi is a vector. The last column, yi ¼ f ðxiÞ; is what we try to

predict given the xi features. Each xi is an element of the set

domðX1Þ £ domðX2Þ £ · · · £ domðXmÞ; where domðXjÞ is the

domain of the Xj feature and yi belongs to one of the k

classes, i.e. yi [{C1;C2;…;Ck}:
A complex is a disjunction of conjunctions of feature tests

in the form: ‘Xi op Value’, where Xi is a feature, op is an

operator in the set { ¼;–;,;#;.;$ } and Value is a valid

feature Xi constant value, according to feature domain.

A rule assumes the form ‘if L then R’ or symbolically

L ! R; where the left rule part L and the right rule part R are

both complexes without features in common, i.e.

featuresðLÞ> featuresðRÞ ¼ Y: The left rule part is

also denominated rule condition and the right rule part R is

denominated rule conclusion.

A classification rule assumes the strict rule form ‘if L

then class ¼ Ci’, where Ci belongs to the set of possible k

classes {C1;C2;…;Ck}: For simplicity, from now on we

always refer to a classification rule as a rule.

The coverage of a rule is defined as follows. Considering

the rule L ! R; instances that satisfy the L part (i.e. L is true

for these instances) compose its covered set, in other words,

those instances are covered by the rule. Instances that satisfy

both L and R are correctly covered by the rule. Instances

satisfying L but not R are incorrectly covered by the rule. On

the other hand, instances that do not satisfy the L part are not

covered by the rule.

Given a set of training instances, the inducer outputs a

classifier (also called a hypothesis) such that, given a new

instance, it accurately predicts its class label. All classifiers

use stored data structures that are then interpreted as a

mapping for an unclassified instance to a label [13].

Formally, in supervised classification an instance is a pair

ðxi; f ðxiÞÞ; where xi is the input and f ðxiÞ is the output. The

task of an inducer is, given a set of instances, to induce a

function h that approximates f, since f is frequently

unknown. In this case, h is called an hypothesis over the

true function f.

A symbolic classifier is an hypothesis, whose description

language can be transformed into a set of rules. Given a rule

and a dataset, one possible way to measure the performance

of that rule in the dataset is by computing its contingency

matrix, shown in Table 1 [10]. In this table, L denotes the set

of instances, where the rule condition is true and its

complement, �L; denotes the set of instances, where the rule

condition is false and analogously for R e �R: LR denotes the

set of instances L > R; where both L and R are true, L �R

denotes the set of instances L > �R; where L is true, but R is

false and so on. For simplicity, we denote the cardinality of

the set A as a, in other words, a ¼ lAl: Therefore, l denotes

the number of instances in the set L, i.e. l ¼ lLl; r denotes the

number of instances in the set R, i.e. r ¼ lRl; lr denotes the

number of instances in the set LR and so on. As before, n is

the total number of instances in the dataset.

The relative frequency lAl=n ¼ a=n associated to the

subset A is denoted by pðAÞ; where A is a subset from the n

instances. From this point of view, the relative frequency is

used as a probability estimate. The notation pðAlBÞ follows

its usual definition given by Eq. (1), where A and B are both

subset from the n instances set.

pðAlBÞ ¼
pðABÞ

pðBÞ
¼

lABl
n
lBl
n

¼

ab

n
b

n

¼
ab

b
ð1Þ

An ensemble consists of a set of individual classifiers,

whose predictions are combined, when predicting novel

instance labels. Previous research has shown that an

ensemble is often more accurate than any of the individual

classifier in the ensemble, i.e. multiple classifiers have been

shown to lead to improved predictive accuracy, when

classifying instances that are not among the training set.

Although there are benefits in accuracy that can be

obtained from the use of ensembles, since they usually

reduce the error by reducing bias and variance [3,5,7], one

problem is its interpretability by humans. It can be noted

that combining symbolic classifiers into one single classifier

by a majority (or other) vote mechanism does not result into

a symbolic classifier any more, i.e. an ensemble of symbolic

classifiers is no longer symbolic. Besides that, in general,

ensembles can be very large. On experiments described in

Ref. [11], the ensemble was 80–160 times greater than any

of the individual classifier.

Another point to be noted is the possible redundancy

present on the ensemble. To understand this, consider an

ensemble composed by three decisions trees {h1; h2; h3}: It

is possible that a given branch on the tree h1 to be exactly

the same, or very similar, to another one on h2 ou h3:
According to Dietterich and Kong [7], “Some method is

need for converting a combination of trees (or other

complex hypotheses) into a smaller, equivalent hypothesis.

These tree are very redundant; how can we remove this

redundancy while still reducing bias and variance?”

These three aspects—interpretability, size, and redun-

dancy—bring undesirable consequences to the ensembles

from the point of view of human comprehension. Therefore,

Table 1

Contingency matrix for the rule L ! R

L �L

R lr lr r ¼ lr þ �lr
�R l�r �l�r �r ¼ l�r þ �l�r

l ¼ lr þ l�r �l ¼ �lr þ l�r n ¼ l þ �l ¼ r þ �r

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136130

alternative methods are necessary, even reducing bias and

variance, in order to keep the symbolic component in the

final classifier.

3. The XRULER system

One possible solution to the problem presented in

Section 2 considers the combination of symbolic classifiers

into a final classifier, which is still symbolic, differently of

ensembles. This means that the classifiers are seen as white-

boxes or, more precisely, as a rule set.

A similar idea was used in the SKICAT project proposed

in Ref. [8] using the RULER system. RULER splits the data

into training and testing samples. The training sample feeds

the O-BTREE inducer, building a non-pruned decision tree,

which is then transformed into a rule set. Since this process

generates a large number of rules, RULER discards those

rules that result from a weak correlation with the data.

Finally, a greedy cover algorithm is applied in order to find a

minimal rule set, that is, consistent with the data. According

to Fayyad et al. [8], RULER produces a rule set, that is,

robust and containing less rules than any of the individual

tree induced by O-BTREE and it also presents a better

classification performance than human experts.

In this work, we propose the extension of the RULER

system to a new system named eXtended RULER

(XRULER). This extension considers the use of more than

one inducer in the initial learning steps, as well as different

criteria that can be used by the cover algorithm.

Fig. 1 shows the XRULER system, which has been

implemented using MYSQL [14] and PERL [18]. Initially,

the instances are splitted into two disjoint sets: the learning

set and the evaluation set. Using the learning set, XRULER

extracts training and test samples. Training samples are

given to inducers that extract symbolic classifiers. Each

classifier is then converted into a standard if– then rule form

[1,2] and evaluated in the correspondent testing set,

computing the contingency table for each rule. The standard

rule form is similar to the CN2 inducer with some

extensions [15]. After that, filters can be applied in order

to remove rules statistically insignificant. Then, the cover

algorithm uses the learning set to find a minimal subset of

rules that covers. Finally, this minimal subset is evaluated

using the evaluation set, which was never seen by XRULER

in the learning step.

Fig. 1. The XRULER system.

Algorithm 1

Basic cover algorithm to select unordered rules

Require: InstanceSet: instances to be covered

RuleSet: rule set

Ensure: CoverSet: minimal rule set from RuleSet that covers InstanceSet

1: procedure basic_cover(InstanceSet,RuleSet)

2: CoverSet : ¼ Y
3: repeat

4: best_rule : ¼ select best rule from RuleSet using InstanceSet

5: CoverSet : ¼ CoverSet þ {best_rule}

6: RuleSet : ¼ RuleSet 2 {best_rule}

7: InstanceSet : ¼ InstanceSet 2 {I: I in InstanceSet and covered(I,

best_rule)}

8: until (InstanceSet ¼ Y) or not found (best_rule)

9: return CoverSet

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136 131

3.1. Basic cover algorithm

The XRULER uses a cover algorithm in order to obtain a

minimal rule set from the sets induced in the initial step by

the symbolic ML algorithms. The cover algorithm produces

unordered rules, since they are more easily understood by

humans [6].

Algorithm 1 shows the basic procedure to select

unordered rules. Given the rule set RuleSet and a set

InstanceSet of instances to be covered, the algorithm search

for the best rule best_rule, according to some criteria. Once

the best rule is found, it is included in the cover set CoverSet

and removed from RuleSet. Next, instances correctly

covered by the best rule are removed from the InstanceSet.

The reason to keep those instances incorrectly covered

(removing only instances correctly covered by the best rule)

allows the algorithm to find in the following iterations, a

rule that correctly covers them. The function

coveredðI; best_ruleÞ is true if instance I is correctly covered

by the rule best_rule, false otherwise. This process is

repeated, while there are uncovered instances or a new

best_rule is not found.

3.2. Criteria for selecting the best rule

Algorithm 1 shows that the final result is dependent of

the criteria used to select the best rule. In fact, there are

several criteria and each of them provides a different

minimal rule sets.

One possible criteria to select the best rule consists in

choosing the rule with the best rule fitness for the task at

hand. Denoting the degree of fitness for rule L ! R as

rfðL ! RÞ; in general, the selection criteria chooses the

best rule as being the one with the greatest value of rf. It

follows a description of three criteria that can be used to

estimate rule fitness.

Positive reliability. It is possible to define the rule fitness

rf through its accuracy, where the accuracy accðL ! RÞ is

defined by Eq. (2) as the conditional probability of the rule

conclusion R given the fact the rule condition L is true [17].

rfðL ! RÞ ¼
def
accðL ! RÞ ¼ pðRlLÞ ð2Þ

A simple estimate for pðRlLÞ uses the positive reliability

prelðL ! RÞ; defined as the ratio between the number of

instances correctly covered by the rule and the total number

of instances covered by the rule, i.e. lr=l; according to the

notation introduced in Table 1.

Equivalently, prelðL ! RÞ ¼ lr=l can be expressed as

lr=ðlr þ l�rÞ; where lr is the number of instances correctly

covered by the rule and l�r is the number of instances

incorrectly covered by the rule. It is possible to note that

0 # prelðL ! RÞ # 1 and, according to this criteria, the

larger the positive reliability, the best is the rule.

However, the positive reliability presents an undesirable

property. For instance, considering two rules R1 ; L1 ! R1

and R2 ; L2 ! R2; with l1r1 ¼ 100; l1rr�r1 ¼ 1 and l2r2 ¼ 5;
l2rr�r2 ¼ 0; then prelðR1Þ ¼ l1r1=l1 ¼ 0:99 e prelðR2Þ ¼

l2r2=l2 ¼ 1:00; indicating that R2 is a better rule than R1;
which is not true in this situation.

Laplace’s accuracy. One possible solution for the

problem presented by the positive reliability, when

estimating pðRlLÞ consists in replacing it by the Laplace’s

accuracy (lacc) [6], defined by Eq. (3), where k is the

number of classes in the dataset.

rfðL ! RÞ ¼
def
laccðL ! RÞ ¼

lr þ 1

l þ k
¼

lr þ 1

lr þ l�r þ k
ð3Þ

Considering this criteria, the larger the value of Laplace’s

accuracy, the best is the rule. Still considering the previous

example for k ¼ 2 classes, we obtain laccðR1Þ ¼ 0:98 and

laccðR2Þ ¼ 0:85; indicating that rule R1 is better than rule

R2: Similar to the positive reliability, the Laplace’s accuracy

assumes values in the range 0 # laccðL ! RÞ # 1:
Novelty. The novelty novðL ! RÞ; defined by Eq. (4),

compares the observed lr value against the expected value

under the assumption of independency lr=n; where n is the

number of instances [10]. Therefore, it is possible to

estimate rule fitness using novelty.

rfðL ! RÞ ¼
def
novðL ! RÞ ¼ pðLÞðpðRlLÞ2 pðRÞÞ ð4Þ

The novelty assumes values in the range 20:25 #

novðL ! RÞ # 0:25 and, considering this criteria, the

larger its positive value (near 0.25), the best is the rule.

The expression pðRlLÞ in Eq. (4) can be estimated using the

Laplace’s accuracy.

3.3. Classifying new instances

Once obtained the minimal rule set through the cover

algorithm, it is possible to use these rules as a classifier.

XRULER uses a similar criteria than the CN2 inducer, when

labeling new instances [6]. Initially, for each rule L ! R; the

values lr and l�r are calculated using the same InstanceSet

used by Algorithm 1. Given a new unlabeled instance, all

rules which fire are collected and their associated values are

added for each class. After that, the Laplace’s accuracy is

calculated and the class with the greatest frequency value is

selected to label the new instance.

For instance, suppose that given a new instance, three

rules R1; R2 e R3 fire for this instance, and the class

predicted by R1 and R3 is different from the class predicted

by R2: Assuming l1r1 ¼ 30; l1rr�r1 ¼ 5; l2r2 ¼ 41; l2rr�r2 ¼ 2;
and l3r3 ¼ 10; l3rr�r3 ¼ 0; as the class predicted by R1 and R3

is the same, their associated values are added, given

l1;3r1;3 ¼ 40; l1;3rr�r1;3 ¼ 5: The Laplace’s accuracy for both

rules R1 and R3 is laccðR1;R3Þ ¼ ð40 þ 1Þ=ð40 þ 5 þ

2Þ ¼ 0:87 and for rule R2 is laccðR2Þ ¼ ð41 þ 1Þ=ð41 þ

2 þ 2Þ ¼ 0:93: Therefore, as laccðR2Þ . laccðR1;R3Þ;
the class predicted by rule R2 is selected to label the new

instance.

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136132

4. Experimental setup

In order to evaluate the XRULER system, several

experiments were conducted on 10 real world domains.

Most of datasets are from the UCI Irvine Repository [4]

except for dna and genetics, which are from the StatLog

project [12].

Two inducers, C4.5 [16] and CN2 [6], have been used in

this work. These inducers are well known in the ML

community and belong to the eager learning approach. In

this approach, the algorithms greedily compile the training

data into an intentional concept description, such as a rule

set or decision tree, discarding the data after this process.

Only the learned concept is used to classify new cases. C4.5

induces decision trees, while CN2 induces production rules.

It is important to observe that each dataset has not been

pre-processed in any way, for example, by removing or

replacing missing values or transforming features. Further-

more, each individual inducer was run with default options

setting for all parameters, i.e. no attempt was made to tune

any inducer. We have used both the Laplace’s accuracy

(lacc) and novelty (nov) as criteria to select the best rule.

Table 2 summarizes the datasets used in this work. It

shows, for each dataset, the number of instances

(#Instances), number and percentage of duplicate (appear-

ing more than once) or conflicting (same attribute-value but

different class) instances, number of features (#Features)

continuous and nominal, class distribution, the majority

error and if the dataset have at least one missing value.

Datasets are presented in ascending order of the number of

features, as will be in the remaining tables and graphs. The

experiments were performed in the following way:

1. Each original dataset was randomly divided into two

disjoint subsets: the learning subset containing 70% of

the instances and the evaluation subset containing the

remaining 30%. The evaluation subset was never used by

XRULER during the learning step.

2. The learning subset was then sampled 10 times using

bootstrap, resulting in 10 training samples and 10 test

samples.

3. For each training bootstrap sample, we run the inducers

C4.5 and CN2, thus yielding 20 classifiers (10 induced by

C4.5 and 10 induced by CN2).

4. After that, the cover algorithm was applied in order to

extract the minimal rule set covering the instances

belonging to the learning subset. The cover algorithm

was applied twice: using the Laplace’s accuracy, as well

as using novelty.

5. Finally, the minimal rule set accuracy was evaluated

using the instances contained in the evaluation subset. As

a baseline, the inducers C4.5 and CN2 were applied to

the learning subset and their accuracy was measured on

the evaluation subset.

Table 2

Datasets description

Dataset #Instances Duplicated or conflicting #Features (cont.,nom.) #Classes Majority error (%) Missing values

bupa 345 4 6 (6,0) 2 42.03 N

pima 769 1 8 (8,0) 2 34.98 N

breast-cancer 699 8 10 (10,0) 2 34.48 Y

hungaria 294 1 13 (13,0) 2 36.05 Y

crx 690 0 15 (6,9) 2 44.49 Y

hepatitis 155 0 19 (6,13) 2 20.65 Y

anneal 898 12 38 (6,32) 5 23.83 Y

sonar 208 0 60 (60,0) 2 46.63 N

genetics 3190 185 60 (0,60) 3 48.12 N

dna 3186 185 180 (0,180) 3 48.09 N

Table 3

Accuracy of C4.5, CN2, and XRULER using bootstrap

Dataset C4.5 CN2 XRULER (lacc) XRULER (nov)

bupa 64.07 ^ 1.05 65.43 ^ 1.02 66.12 ^ 1.78 64.56 ^ 2.00

pima 74.44 ^ 0.83 72.74 ^ 0.88 73.17 ^ 0.76 73.74 ^ 0.49

breast-cancer 93.82 ^ 0.30 95.07 ^ 0.32 94.31 ^ 0.37 93.97 ^ 0.57

hungaria 77.62 ^ 1.55 78.18 ^ 1.38 77.05 ^ 1.52 78.98 ^ 1.35

crx 85.91 ^ 0.72 82.71 ^ 0.45 84.40 ^ 0.69 85.60 ^ 0.66

hepatitis 76.74 ^ 1.58 79.35 ^ 0.81 79.78 ^ 1.38 77.61 ^ 1.65

anneal 90.65 ^ 0.70 91.82 ^ 0.99 96.77 ^ 0.51 93.83 ^ 1.51

sonar 72.42 ^ 1.45 71.29 ^ 1.66 74.19 ^ 2.07 71.45 ^ 1.25

genetics 93.60 ^ 0.27 79.85 ^ 1.59 93.00 ^ 0.15 89.85 ^ 1.67

dna 92.49 ^ 0.34 87.94 ^ 0.27 92.45 ^ 0.31 93.16 ^ 0.21

Average 82.18 80.44 83.12 82.28

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136 133

6. Since the datasets have moderated size, all these steps

were repeated 10 times to provide better estimates.

However, for large datasets typically found in DM tasks,

this would not be necessary.

5. Results

Table 3 shows the accuracy (mean and standard

deviation) obtained by C4.5, CN2, and XRULER using

the Laplace’s accuracy (lacc), as well as novelty (nov).

To determine whether the difference between them, i.e.

XRULER (using lacc and nov) against the standard

inducers C4.5 and CN2, is significant or not, we show in Fig.

2 one graph with four consecutive bars for every dataset.

Each bar corresponds to the mean accuracy divided by the

standard deviation. The variance of the significance test is

the average variance of both algorithms and a standard

normal distribution is assumed. Any bar having length

greater than two indicates that this result is significant at the

95% confidence level. When the bar is above zero, it means

that the first algorithm (XRULER) outperforms the second

(C4.5 or CN2); if the bar is below zero, then the second

algorithm outperforms the first. Whenever the bar length is

above (below) two, it means that the first (second) algorithm

significantly outperforms the second (first) algorithm.

Table 4 shows the average number of rules and Fig. 3

shows the absolute difference (in standard deviations) of the

number of rules. Negative (positive) values indicate that

XRULER reduced (increased) the number of rules, when

compared with the number of rules induced by C4.5 and

CN2. As can be noted, XRULER seems to increase the

number of rules in datasets with small number of features

and instances but the number of rules decreases in datasets

with larger dimensions, except for genetics using CN2.

Table 5 provides a comparison between accuracy

(horizontal axis) and the number of rules (vertical axis)

among XRULER (indicated by x) and C4.5 or CN2. The

first quadrant, indicated by (%, %), shows the cases where

an increment in the accuracy, as well as in the number of

rules were obtained. The second quadrant, indicated by (*,

%), shows the cases, where a decrease in the accuracy but an

increment in the number of rules were obtained. The third

quadrant, indicated by (*, *), shows the cases, where a

decrease both in the accuracy and in the number of rules

were obtained. The fourth quadrant, indicated by (%, *),

shown the cases, where an increment in the accuracy but a

decrease in the number of rules were obtained. The symbol

‘†’ indicates that the corresponding difference both for the

accuracy and the number of rules is significant at the 95%

Table 4

Number of rules for C4.5, CN2, and XRULER

Dataset C4.5 CN2 XRULER (lacc) XRULER (nov)

bupa 18.40 ^ 4.38 27.60 ^ 2.01 28.00 ^ 0.94 11.60 ^ 3.03

pima 19.20 ^ 9.34 39.80 ^ 5.37 49.30 ^ 3.16 21.40 ^ 2.80

breast-cancer 11.20 ^ 4.10 14.80 ^ 1.32 12.60 ^ 2.50 6.90 ^ 1.52

hungaria 10.00 ^ 2.98 21.70 ^ 2.45 17.10 ^ 1.85 6.40 ^ 1.07

crx 16.20 ^ 7.63 31.70 ^ 2.67 33.90 ^ 3.18 12.00 ^ 3.09

hepatitis 6.50 ^ 2.37 15.10 ^ 1.91 7.60 ^ 1.71 3.70 ^ 0.95

anneal 45.80 ^ 11.10 45.90 ^ 6.30 13.80 ^ 1.03 8.90 ^ 1.29

sonar 12.60 ^ 1.58 22.50 ^ 1.96 11.20 ^ 1.03 4.70 ^ 1.25

genetics 276.10 ^ 20.62 65.20 ^ 9.64 118.80 ^ 4.44 32.40 ^ 9.61

dna 70.00 ^ 9.49 99.10 ^ 5.76 75.50 ^ 1.96 34.60 ^ 4.14

Average 48.60 38.34 36.78 14.26

Fig. 2. Absolute difference in standard deviations of accuracy.

Fig. 3. Absolute difference in standard deviations of the number of rules.

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136134

confidence level; ‘W’ indicates that the difference is not

significant at the 95% level. It can be seen that the results are

more concentrated on the third (*, *) and fourth (%, *)

quadrants. On the third quadrant, there is a concentration of

results for small datasets, except for genetics dataset when

comparing XRULER (nov) with C4.5, where there is a

significant reduction both in the accuracy and in the number

of rules. On the other hand, on the fourth quadrant, it is

possible to note a concentration of results for large datasets.

Considering all quadrants, it is possible to note that the

majority of significant results are concentrated on the fourth

quadrant, where an increment in accuracy and reduction in

the number of rules were obtained by XRULER. These

results show that XRULER induces less rules than the

standard inducers (C4.5 and CN2) and those rules classify

instances with greater accuracy than the standard classifiers.

6. Conclusion

In this work, we described a system under development,

which addresses the problem of predictive DM, whenever

the result of learning can be expressed in the form of

classification rules. Our framework assumes that the dataset

is a normal database attribute-value table, which consists of

n records described by m distinct features that have been

classified into k known classes.

There are many different methods for constructing

classification rules although none of them is universally

the best, since different application domains lead to different

problems, requiring different solutions. This being the case,

it is expected that a combination of these methods, as

proposed in this work, may yield better classification rules.

Such combinations can be made in various ways. We

consider simplicity of rules as a goal in itself, although

simplicity does not necessarily lead to greater accuracy.

We performed experiments with the XRULER system in

10 datasets using the C4.5 and CN2 inducers. The cover

algorithm used two criteria to select the best rule: Laplace’s

accuracy and novelty. On average, XRULER showed

greater accuracy than the standard inducers C4.5 and

CN2. The Laplace’s accuracy presented greater increase

in accuracy than novelty.

Another advantage obtained by XRULER is related to

the number of rules obtained by the cover algorithm. On

average, there was a decrease in the number of rules using

the Laplace’s accuracy; for novelty the decrease was more

than a half (above 60%). This was accomplished by a

decrease in the error rate above 0.5% for C4.5 and almost

10% for CN2. In experiments reported in Ref. [17], where

the original CN2 inducer was modified in order to consider

novelty for selecting the best rule, on average, the novelty

provided a reduction of nine times the number of rules

induced but with an increase in the error rate of about 5%.

Thus, the results presented by XRULER show that it is

possible to combine symbolic classifiers into a final

symbolic classifier decreasing the number of rules without

decreasing the accuracy.

Table 5

Accuracy versus number of rules

Dataset ð*;%Þ ð%;%Þ

x(lacc)

–C4.5

x(lacc)

–CN2

x(nov)

–C4.5

x(nov)

–CN2

x(lacc)

–C4.5

x(lacc)

–CN2

x(nov)

–C4.5

x(nov)

–CN2

bupa W W

pima W W W

breast-cancer W

hungaria W

crx W W

hepatitis W

anneal

sonar

genetics †

dna W

bupa W W

pima W

breast-cancer W W W

hungaria W W W

crx W †

hepatitis W W †

anneal † † W W

sonar W W W W

genetics W † †

dna † W †

ð*;*Þ ð%;*Þ

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136 135

References

[1] J.A. Baranauskas, M.C. Monard, An environment for rule extraction

and evaluation from databases, in: M.C. Monard, J.S. Sichman (Eds.),

Proceedings of the IBERAMIA/SBIA, Atibaia, SP, Brazil, 2000, pp.

187–196.

[2] J.A. Baranauskas, M.C. Monard, G.E.A.P.A. Batista, A computational

environment for extracting rules from databases, in: N. Ebecken, C.A.

Brebbia (Eds.), Proceedings of the Second International Conference

on Data Mining, Cambridge, UK, 2000, pp. 321–330.

[3] E. Bauer, R. Kohavi, An empirical comparison of voting classification

algorithms: bagging, boosting, and variants, Machine Learning 36

(1999) 105–139.

[4] C.L. Blake, C.J. Merz, UCI repository of machine learning databases,

1998, http://www.ics.uci.edu/~mlearn/MLRepository.html.

[5] L. Breiman, Bias, variance and arcing classifiers, Technical Report

460, Statistics Department, University of California, 1996, ftp://ftp.

stat.berkeley.edu/pub/users/breiman/.

[6] P. Clark, R. Boswell, Rule induction with CN2: some recent

improvements, in: Y. Kodratoff (Ed.), Proceedings of the Fifth

European Conference (EWSL 91), Springer, Berlin, 1991, pp.

151–163.

[7] T.G. Dietterich, E.B. Kong, Machine learning bias, statistical bias,

and statistical variance of decision tree algorithms, 1997, ftp://ftp.cs.

orst.edu/pub/tgd/papers.

[8] U.M. Fayyad, S.G. Djorgovski, N. Weir, From digitized images to on-

line catalogs: Data mining a sky survey, AI Magazine 17 (2) (1996)

51–66.

[9] Y. Freund, R.E. Schapire, Experiments with a new boosting

algorithm, Proceedings of the 13th International Conference on

Machine Learning, Lake Tahoe, California, Morgan Kaufmann, San

Francisco, CA, 1996pp. 123–140.

[10] N. Lavrač, P. Flach, R. Zupan, Rule evaluation measures: a unifying

view, in: S. Dzeroski, P. Flach (Eds.), Proceedings of the Ninth

International Workshop on Inductive Logic Programming (ILP-99),

Lecture Notes in Artificial Intelligence, vol. 1634, Springer, Berlin,

1999, pp. 74–185.

[11] D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting,

Proceedings of the 14th International Conference on Machine

Learning, San Francisco, Morgan Kaufmann, San Francisco, CA,

1997pp. 211–218.

[12] D. Michie, D.J. Spiegelhalter, C.C. Taylor (Eds.), Machine Learning,

Neural and Statistical Classification, Ellis Horwood, Chichester, UK,

1994.

[13] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1998.

[14] MySQL, The MYSQL server, 2000, http://www.mysql.com.

[15] R.C. Prati, J.A. Baranauskas, M.C. Monard, Extracting information

for evaluating rules induced by Machine Learning algorithms (in

Portuguese), Technical Report 145, ICMC-USP, 2001, ftp://ftp.icmc.

sc.usp.br/pub/BIBLIOTECA/rel_tec/RT_145.ps.zip.

[16] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann, San Francisco, CA, 1993.

[17] L. Todorovski, P. Flach, N. Lavrač, Predictive performance of

weighted relative accuracy, in: D.A. Zighed, J. Komorowski, J.

Zytkow (Eds.), Fourth European Conference on Principles of Data

Mining and Knowledge Discovery (PKDD2000), Springer, Berlin,

2000, pp. 255–264.

[18] L. Wall, T. Christiansen, R.L. Schwartz, Programming Perl, O’Reilly

& Associates, Inc, 1996.

J.A. Baranauskas, M.C. Monard / Knowledge-Based Systems 16 (2003) 129–136136

http://www.ics.uci.edu/~mlearn/MLRepository.html
ftp://ftp.stat.berkeley.edu/pub/users/breiman/
ftp://ftp.stat.berkeley.edu/pub/users/breiman/
ftp://ftp.cs.orst.edu/pub/tgd/papers
ftp://ftp.cs.orst.edu/pub/tgd/papers
http://www.mysql.com
ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA/rel_tec/RT_145.ps.zip
ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA/rel_tec/RT_145.ps.zip

	Combining symbolic classifiers from multiple inducers
	Introduction
	Definitions and notation
	The XRULER system
	Basic cover algorithm
	Criteria for selecting the best rule
	Classifying new instances

	Experimental setup
	Results
	Conclusion
	References

