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Abstract Classi¯cation for very large databases has many practical ap-
plications in Data Mining. Thus, Machine Learning algorithms should
be able to operate in massive datasets in order to extract symbolic clas-
si¯ers. In this context, a symbolic classi¯er is the one that can be trans-
formed into a set of rules. When a dataset is too big for a particular
learning algorithm, there are other ways to make learning feasible such
as dataset sampling: for each sample a classi¯er is extracted for further
investigation, like accuracy evaluation. It is also possible to evaluate the
performance of combining all extracted classi¯ers into an ensemble. How-
ever, combining symbolic classi¯ers into a single one by a majority (or
other) vote mechanism does not result into a symbolic classi¯er any
more. The approach adopted in this under development work consists
in evaluating the induced knowledge as white-box i.e., looking to the
rules and trying to combine them using a computational environment.
The environment is designed as a test-bed for Data Mining research, as
well as a generic knowledge discovery tool for varied database domains.
Flexibility is achieved by an open-ended design for extensibility, enabling
integration of existing Machine Learning algorithms, support functions
for pre-processing as well as new locally developed algorithm and func-
tions.
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1 Introduction

Usual approaches for developing a knowledge base involve a manual formaliza-
tion of expert's knowledge and encoding it in appropriate data structures. One
important application of Machine Learning | ML | concerns the (semi) auto-
matic construction of knowledge bases through inductive inference. Indeed, ML
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can provide an improvement of current techniques and a basis for developing
alternative knowledge acquisition approaches.

One challenge in predictive Data Mining | DM | is to exploit and combine
existing Machine Learning algorithms e®ectively. However, ML algorithms are
not designed to deal with big data, an important issue in Data Mining. Another
important point is related to the fact that, frequently, ML algorithms are inter-
ested in the predictive power of the induced knowledge on new instances i.e.,
accuracy. Although prediction can be considered a strong goal of Data Mining,
human understanding and evaluation of the induced knowledge also plays an
important role, which is often neglected.

In this work we describe a under development computational environment for
extraction and evaluation of rules from databases. The emphasis in our work is
not centered in classi¯cation performance but in understanding for explanation
since it is often necessary that a potential user can make an appreciation of the
methods and rationale behind a classi¯cation rule. In fact, in some contexts,
such as credit scoring, this is a legal requirement.

This work is organized as follows. Section 2 outlines the architecture of the
computational environment currently being developed, sketching its main com-
ponents. The basic steps taken by our system are provided from Sections 2.1
through 2.3 and Section 2.4 shows a running example of our approach. Finally,
Section 3 presents some concluding remarks.

2 Basic System Overview

A general overview of the system can be seen in Figure 1. It is assumed that the
original database has already been processed in such a way that it holds criti-
cal information that can be used for further analytical processing and decision
making. In other words, the database holds the sort of data typically found in a
Data Warehouse [16]. Furthermore, it is assumed that the data extracted from
this database has already been transformed to a plain text specialized standard
form (Text Dataset in Figure 1) explained in Section 2.1.

The Text Dataset is transformed into a Database Table structure inside the
MySQL database server [11], dividing the original data into two disjunct subset
i.e., Training Set and Testing Set in Figure 1. Afterwards, it is possible for the
user to pick up samples and construct classi¯ers using di®erent ML algorithms
(which description languages can be translated into a set of if-then rules). As
each extracted classi¯er di®ers from each other the induced knowledge is then
converted into a standard rule form. Inside the MySQL database server the
complete rule set can be evaluated for interestingness criteria [7, 8] or using a
covering algorithm that tries to increase the predictive power of the ¯nal rule
set that represents the knowledge of the original database. The next sections
describe brie°y relevant points of our system.
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Figure1. The Proposed Computational Environment

2.1 From Text Datasets to Database Tables

Our environment assumes a dataset in the feature-value format. A dataset is
a set of classi¯ed (labeled) instances. Table 1 shows the general format of a
dataset T with n instances and m features. In this table a row i refers to the
i-th instance (i = 1; 2; : : : ; n) and column entries xij refer to the value of the
j-th (j = 1; 2; : : : ;m) feature Xj of instance i.

As can be seen, instances are tuples Ti = (xi1; xi2; : : : ; xim; yi) = (xi; yi)
also referred as (X; Y ) where the last column, Y , is what we try to predict
given the other X features i.e., Y = f(X). Each X is an element of the set
X1 £X2 £ : : :£Xm where Xj is the domain of the j-th feature and Y belongs
to one of the k classes i.e., Y 2 fC1; C2; : : : ; Ckg. The ML algorithms known by
our system assume the instances are given in this feature-value format.

In general, the feature-value format of a dataset is represented by two text
¯les with extensions .names and .data. The .data ¯le contains the data itself
whereas the .names ¯le describes the dataset schema (or structure). For instance,
C4:5, C5:0 [14] as well as theMLC++ library [9] share this sort of representation.



Table1. Dataset in the feature-value (or spreadsheet) format

X1 X2 ¢ ¢ ¢ Xm Y
T1 x11 x12 ¢ ¢ ¢ x1m y1
T2 x21 x22 ¢ ¢ ¢ x2m y2
...

...
...
. . .

...
...

Tn xn1 xn2 . . . xnm yn

Having the dataset represented in the text form is useful when transferring
data across di®erent platforms. However, simple statistics such as counting dif-
ferent feature values can not be performed directly by the user.

Our system recognizes datasets in theMLC++ format which are then scanned
by a PERL script [15] that converts its schema (the .names ¯le) into a table struc-
ture inside the MySQL database server. Once created, the table is populated
with data from the original .data text ¯le. All conversions are performed auto-
matically, including conversion from unknown values (represented as '?' in the
MLC++ .data text ¯le) to NULL values in the database table. As can be seen,
this step needs to be performed only once in order to make a dataset available
in theMySQL table inside our system.

One immediate advantage of having instances inside a database table is that
simple statistics like counting values, ¯nding minimum/maximum, computing
averages as well as ¯nd class distribution among feature values, beyond other
measures, can be easily performed through SQL statements. In fact, we have
already developed a tool for extracting such basic information [12].

2.2 From Database Tables to Symbolic Classi¯ers

With the dataset now inside aMySQL table, the system allows the user to split
the data into training and testing sets. The system also allows the automatic
extraction of several samples from the training data. We will refer further to
samples from the training set although a simple (unique) sample that contains
all training set can be used instead.

Once samples are extracted, the user is able to choose which inducer (or
inducers) are to be used. In the simple case, it is possible to (i) select just
one inducer with default parameters. The complexity can be increased from (ii)
selecting one inducer but with several di®erent user de¯ned parameters to (iii)
di®erent inducers with default parameters or even several to (iv) inducers with
default and user de¯ned parameters. The e®ect of choosing di®erent inducer's
parameters can help to ¯nd more general or speci¯c rules in the ¯nal classi¯er.

After de¯ning both samples and inducers to be used, the induction process
can take place. For each sample and inducer, the system converts the sample
into the speci¯c inducer's input, using PERL scripts. Then, the system runs
the inducer with its associated parameters in order to obtain the corresponding
classi¯er. As can be seen, this process can generate a large amount of classi¯ers.
For example, for 10 samples and 2 inducers executed with default parameters



as well as once with user de¯ned parameters, 10 £ 2 £ 2 = 40 classi¯ers are
extracted at the end of this step.

Recall that in supervised classi¯cation an instance is a pair (X; f(X)) where
X is the input and f(X) is the output. The task of an inducer is, given a set of
instances, to induce a function h that approximates f . In this case, h is called
an hypothesis over f .

A symbolic classi¯er is an hypothesis whose description language can be
transformed into a set of rules | for instance induction of decision trees or
unordered decision rules. Although inducers can produce classi¯ers that di®er
in their syntactic form, our system is able to deal with them if it is possible to
convert them into the following rule form

if <complex> then <class = Ci>

where Ci belongs to the set of possible k classes fC1; C2; : : : ; Ckg. The<complex>
part is also denominated rule conditions and <class = Ci> is denominated rule
conclusion. The <complex> is a disjunction of conjunctions of feature tests in
the form

Xi op Value

where Xi is a feature, op is an operator in the set f=;6=;<;·; >;¸g and Value
is a valid feature Xi constant value, according to feature domain.

Instances that satisfy the <complex> part of the rule composes its covered
set, or in other words, those instances are covered by the rule. Instances that
satisfy both the <complex> and the conclusion <class = Ci> are positively
covered by the rule. On the other hand, instances satisfying the <complex> but
with <class6= Ci> are called negatively covered.

2.3 From Symbolic Classi¯ers to the Standard Rule Form

After inducing symbolic classi¯ers the following step is to convert them into our
standard rule form. Table 2 describes the grammar G = (T, NT, S, RR) where:

T is the set of terminal symbols (represented by bold face symbols) as well as
relational operators;

NT is the set of nonterminal symbols represented by words inside angular brack-
ets;

S is the start symbol <rule>;
RR is the set of rewrite grammar rules of the form LHS! RHS, where LHS is a
nonterminal, and RHS is a sequence of zero or more symbols either terminal
or nonterminal.

Converters, implemented using PERL scripts, are responsible for translating
the symbolic classi¯er induced by each speci¯c ML algorithm (provided as a
text output by inducers) to the standard rule form required by our system [2].
Current available converters provide translation for inducers ID3 [13], C4:5 [14]



Table2. BNF grammar of rules

S = <rule> ! <rule-number> IF <complex> THEN <class>
<rule-number> ! R0001 j R0002 j . . .
<complex> ! <factor> j

<factor> OR <complex>
<factor> ! <term> j

<term> AND <factor>
<term> ! <feature> <operator> <value>
<operator> ! < j <= j > j >= j = j <>
<class> ! CLASS = <value>
<feature> ! X1 j X2 j . . . j Xm

<value> ! x11 j x12 j . . . j xnm j y1 j y2 j . . . j yn

and CN2 [5]. It should be observed that additional converters can easily be
included into the system.

During the standardization, additional information provided by the inducer
for each rule | like number of correct and incorrect covered instances or any
other accuracy measure | is discarded. This is motivated by the fact that mea-
sures attached to each rule di®er for each inducer and our system aims to use a
standard measure for all rules.

The next step translates the rules already in the standard form into aMySQL
table. This table, besides the inducer and sample from where the rule came from1,
holds also the following information:

rule-id the rule number;
rule-part-order the relative position inside the rule of the expression `<feature>

<op> <value>';
feature the feature's name;
op a relational operator;
value the value for the associated feature;

position a value `p' indicates that row is a rule premise (left-hand side) while
a value `q' indicates the row is a conclusion (right-hand side), following the
p) q logical implication terminology.

For instance, Table 3 shows the conversion of the rule 'R0001 IF X1 < 2

AND X3 = yes THEN CLASS = good' which has two conditions (premises) into
a database table form.

Importing rules into the relational database component of our system aims
to facilitate rule evaluation, since each rule can be easily converted into SQL
statements. Our system allows rule evaluation using a sample which was not
used during the training phase for the speci¯c symbolic classi¯er the rule came
from, thus computing measures that are less biased than measures taken from the

1 In fact, this table contains foreign keys poiting to an inducer table as well as a sample
table.



Table3. Database table form for rule 'R0001 IF X1 < 2 AND X3 = yes THEN
CLASS = good'

rule-id rule-part-order feature op value position

R0001 1 X1 < 2 p
R0001 2 X3 = yes p
R0001 1 CLASS = good q

training set. Consequently, using this strategy it is possible to answer questions
like:

{ Which original features are present in one speci¯c classi¯er?
{ How often each feature is used in the rules?
{ What is the average number of premises in rules?
{ How many positive (negative) instances are covered by one speci¯c rule?

After evaluating each individual rule, the user can decide which ones are
better for the problem at hand, based on his/her experience in the domain.
However, for a large number of rules, this manual evaluation becomes infeasible.
In order to try to overcome this di±culty, we are currently working on rule
set merging, trying to generate a ¯nal rule base from all extracted symbolic
classi¯ers. One approach we are testing consist on a greedy covering algorithm,
similarly the one proposed in [6].

2.4 Example

This section shows a toy running example, adapted from [14] by [1], for better
understanding of how a symbolic classi¯er is translated into the standard rule
form. For this purpose, we shown the results using the C4:5 decision tree inducer
although, as mentioned before, other inducers are currently known by the system.

Let us suppose a dataset containing day-by-day measures from weather con-
ditions, where each instance is composed by the following features:

{ outlook: assumes discrete values \sunny", \overcast" or \rain";
{ temperature: a numeric value indicating the temperature in Celsius degrees;
{ humidity: also a numeric value indicating the percentage of humidity;
{ windy: assumes discrete values \yes" or \no" indicating if it is a windy day.

Furthermore, for each day (instance), someone has labeled each day-by-day
measure as \go" if weather was nice enough for taking a trip to the farm or
\dont go" if this is not the case. This voyage data could look just like the one
shown in Table 4.

The decision tree output produced by C4:5 is shown in Figure 2. After pro-
cessing by PERL scripts, the standard rule format is shown in Figure 3 [12].
Finally, rules are imported into a relational database in the form shown in Ta-
ble 5.



Table4. The voyage data

Instance No. Outlook Temperature Humidity Windy Voyage?

T1 sunny 25 72 yes go
T2 sunny 28 91 yes dont go
T3 sunny 22 70 no go
T4 sunny 23 95 no dont go
T5 sunny 30 85 no dont go
T6 overcast 23 90 yes go
T7 overcast 29 78 no go
T8 overcast 19 65 yes dont go
T9 overcast 26 75 no go
T10 overcast 20 87 yes go
T11 rain 22 95 no go
T12 rain 19 70 yes dont go
T13 rain 23 80 yes dont go
T14 rain 25 81 no go
T15 rain 21 80 no go

outlook = overcast: go (5.0/1.0)

outlook = sunny:

| humidity <= 78 : go (2.0)

| humidity > 78 : dont_go (3.0)

outlook = rain:

| windy = yes: dont_go (2.0)

| windy = no: go (3.0)

Figure2. The C4:5 voyage classi¯er

Standard Rules Converter Copyright (c) Ronaldo C. Prati

Inducer: C4.5 Input File: voyage.tree

Date: Thu Mar 2 15:35:43 2000

R0001 IF outlook = overcast

THEN CLASS = go

R0002 IF outlook = sunny

AND humidity <= 78

THEN CLASS = go

R0003 IF outlook = sunny

AND humidity > 78

THEN CLASS = dont_go

R0004 IF outlook = rain

AND windy = yes

THEN CLASS = dont_go

R0005 IF outlook = rain

AND windy = no

THEN CLASS = go

Figure3. The C4:5 voyage standard form classi¯er



Table5. The C4:5 voyage standard rule form

rule-id rule-part-order feature op value position

R0001 1 outlook = overcast p
R0001 1 CLASS = go q

R0002 1 outlook = sunny p
R0002 2 humidity <= 78 p
R0002 1 CLASS = go q

R0003 1 outlook = sunny p
R0003 2 humidity > 78 p
R0003 1 CLASS = dont go q

R0004 1 outlook = rain p
R0004 2 windy = yes p
R0004 1 CLASS = dont go q

R0005 1 outlook = rain p
R0005 2 windy = no p
R0005 1 CLASS = go q

3 Concluding Remarks

In this work we described a system under development which addresses the
problem of predictive DM whenever the result of learning can be expressed in the
form of classi¯cation rules [3]. Our proposed framework assumes that the dataset
is a normal relational database table, which consists of n records described by
m distinct features that have been classi¯ed into k known classes.

Although many work have been published proposing new learning systems
as well as modi¯cations to existing ones, little attention has been given to the
extracted symbolic knowledge. One of the possible reasons for this phenomena is
the extensive use of ready-to-learn datasets for ML (as those found in data repos-
itories [4]) and the extensive use of accuracy to evaluate the induced knowledge.
The emphasis of our environment and its software architecture is on integration
of DM operations, such as database access and selection, ML algorithms that
induce classi¯cation rules, focusing on human understanding and evaluation of
the induced knowledge, as well as on extensibility.

There are many di®erent methods for constructing classi¯cation rules al-
though none of them is universally the best since di®erent application domains
lead to di®erent problems, requiring di®erent solutions [10]. This being the case,
it is expected that a combination of these methods, as proposed in this work,
may yield better classi¯cation rules. Such combinations can be made in various
ways. We consider simplicity of rules as a goal in itself, although simplicity does
not necessarily lead to greater accuracy.

Acknowledgments: We would like to thank Jaqueline Brigladori Pugliesi for
helpful comments on a draft of this paper.
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