A Computational Environment for
Extracting Rules from Databases

J. A. Baranauskas', M. C. Monard! & G. E. A. P. A. Batista'
U Institute of Mathematics and Computer Sciences,
Department of Computer Science and Statistics,

Laboratory of Computational Intelligence,
University of Sao Paulo at Sao Carlos, Brazil.

Abstract

Classification for very large databases has many practical applications in
Data Mining. Thus, Machine Learning algorithms should be able to op-
crate in massive datascts. When a datascet is too large for a particular
learning algorithm to be applied, there are other ways to make learning fea-
sible; preprocessing techniques and dataset sampling can be used to scale
up classifiers to large datasets.

In this work we propose a computational environment based on two
architectures, one for data pre-processing and one for post-processing which
allow cvaluation of induced knowledge. The two architecture share a sct
of learning systems, which can be enhanced to support new omnes. The
environment is designed as a test-bed for Data Mining research, as well as a
generic knowledge discovery tool for varied database domains. Flexibility is
achicved by an open-ended design for extensibility, enabling integration of
existing Machine Learning algorithms, support functions for pre-processing
as well as new locally developed algorithm and functions.

1 Introduction

One of the challenge in Data Mining — DM — is to exploit and combine
existing Machine Learning — ML — algorithins effectively. ML algorithms
are usually interested in the predictive power of the induced knowledge on
new instances i.c., accuracy. Although prediction can be considered the
strongest goal of Data Mining, human understanding and cvaluation of the
induced knowledge also plays an important role, which is often neglected.

In this work we propose a computational environment based on two
architectures, one for data pre-processing and one for post-processing which
allow evaluation of induced knowledge. The two architecture share a set of
learning systems, which can be enhanced to support new ones. We consider
domain independent data pre-processing, such as missing data treatment
and mnoise reduction, since this sort of task can be solved by automatic
techniques. Partially automating data pre-processing is important since it
is very often cited as being the most time consuming step in Data Mining.
One of the most important problems in data pre-processing is not destroying
valuable information in the raw data.

During the pre-processing phase the system takes several samples from
the original database. After that, a cyclic process of domain independent
experiments with those samples that are going to be used by the set (or
subsets) of learning algorithms known by the system can be carried out.

At this point the post-processing phase can be initiated: different learn-
ing algorithms could be applied to the pre-processed datasets, inducing sev-
cral symbolic classifiers for cach sample. Next, the induced rules are con-
verted into a common-syntax rule sct, keeping track of the ML algorithm
that has generated each rule. Then, the complete rule set can be filtered
and evaluated using a covering algorithm that tries to increase the predic-
tive power of the final rule set that represents the knowledge of the original
databasc.

The emphasis is not centered in classification performance but in un-
derstanding for cxplanation since often it is nccessary that a potential
user/especialist has an appreciation of the methods and rationale behind
a classification rule. In fact, in some contexts, such as credit scoring, this is
a legal requirement.

This work is organized as follows. Scction 2 describes the preprocessing
phase and Section 3 describes some important concepts considered when
designing the post-processing phase. Section 4 outlines the architecture of
the computational environment currently under development, sketching its
main components. Finally, Scction 5 presents some conclusions.

2 Data Preprocessing Phase

The main objective of a data analysis process is to discover knowledge that
will be used to solve problems or make decisions. However, problems with
the data may prevent this. Data is acquired in the form of symbolic and
numeric features and from a varicty of sources. These sources may vary
from human beings to sensors with different degrees of reliability [13].
Data quality is a central issue in Data Mining as most learning systems
arc not able to consider additional information during the learning phasc.
In order to assure the data quality, data preprocessing techniques should be
applied to the data before the learning algorithins are fed with the data.
Data preprocessing is a time consuming task, which in many cases is

semi-automatic. Growing amounts of data produced by modern data acqui-
sitions systems has resulted in large amounts of data. Thercfore, techniques
for automatic data preprocessing arc important. In a general way, data
preprocessing can be divided into two main groups of tasks:

1. Domain specific tasks that arce solved by ad hoc techniques imple-
mented using domain knowledge, such as data consistency verification
and data granularity;

2. Domain independent tasks that can be automated, such as missing
data treatment, noise reduction, unbalanced datasct trcatment, cte.

In our research, we are most interested in domain independent data
preprocessing and how these problems can be solved by automatic tech-
niques [3]. One of the most important problems in data preprocessing is
how to know if the valuable information in the raw data is not being de-
stroyed. Data preprocessing techniques must be carefully chosen in order
to introduce a minimal amount of bias.

Although data preprocessing is not considered a glamorous task, many
of the problems found in this phasce arc common to a number of applications.
These problems can be automatically solved by a sct of domain independent
techniques, decreasing the overall time expended in the data preprocessing
phase. Some of these problems are:

e noisy data trcatment;

e missing values treatment;

e unbalanced dataset treatment;
o feature selection;

e feature construction and

e instance sclection.

The computational environment here described integrates preprocess-
ing an post-processing facilities. This environment supplies to the data an-
alyst a sct of data preprocessing techniques to identify and treat the most
common domain independent data problems, such that he or she will be
able to choose among techniques that introduce a minimal amount of bias
in the data.

Each method of data preprocessing implemented in the computational
environment can be analyzed in many real-world datasets. This analysis
supplics some guidelines that help in the decision of which method is ap-
propriate to a determined datasct, such as time requirement, robustness,
insertion of bias, and others.

The handling of missing values will be used to illustrate how data pre-
processing is implemented in this environment. Many learning systems are
able to treat missing values automatically. However, this handling is fre-
quently made with very simple techniques, for instance the substitution of
all missing values of a feature for the its average. This substitution method
may introduce some bias in the data, since the relationship between the
features is not take into account.

A more efficient technique to treat missing values, used in this work, is
to test how the missing values are distributed before any data manipulation.
Missing values randomly distributed are considered less dangerous and can
be manipulated by simple techniques, such as the removal of all instances
with missing valucs. However, missing values not randomly distributed
need to be treated more carcfully, through more robust methods. A robust
method for missing value manipulation consists of creating a model through
a learning system to predict the missing values. Many learning systems can
be used to create these models, such as neural networks and decision trees.
However, this solution can be very time-consuming and some simpler models
such as the k-nearest neighbor can supply faster solutions for large amounts
of data.

This sort of knowledge regarding preprocessing techniques is being
used to construct a simple expert system capable to guide the data ana-
lyst through a scrics of data preprocessing transformations. This expert
system will be able to identify several data problems and suggest a variety
of data preprocessing transformation based on the data problems charac-
teristics. For instance, the expert system will identify that a dataset has
some missing values, check for the randomness of the missing values and to
suggest a method for treating the missing values based on the randomness
and quantity of missing values as well as on the total volume of data.

3 Post-processing Phase

In supervised classification an instance is a pair (X,Y) = (X, f(X)) where
X is the input and f(X) is the output. The task of an inducer is, given a
set of training instances, to induce a function (classifier) h that accurately
approximates f. In this case, h is called an hypothesis over f. Observe
that cach X is an clement of the set X; x Xo x ... x X, where X is
the domain of the j-th feature and Y belongs to one of the k classes i.e.,
Y € {C1,C,...,Cr}. All classifiers use stored data structures that are
then interpreted as a mapping for an unclassified instance to a label [1].

In the post-processing phase, two important concepts are applied that
concern classifiers: the bias plus variance decomposition of a classifier and
enscembles of classifier. They will be shortly deseribed in Sections 3.1 and 3.2.

3.1 The Bias plus Variance Decomposition

The classifier Fundamental Decomposition [8, 6] principle states that the
classifier error can be viewed as three basic components:

1. the minimum error that can be obtained by the ideal classifier: the
lower bound on the expected error of any learning algorithm;

2. the bias which measures how closely the learning algorithm’s average
guess, over all possible training sets of the given size that matches the
target;

3. the variance which measures how much the guesses of the learning
algorithm will vary with respect to each other i.e., how often it fluc-
tuates for different training sets of the given size.

This principle is given by Equation 1 where f = I3* is the Bayes clas-
sifier, which gives the minimum classification error rate ce(f) = ce(B*).
Bias and variance arc always positive terms. At some data points bias pre-
dominates, at others the variance. But, in general, at cach point X both
contributions are positive.

ce(h) = ce(f) + bias(h) + variance(h) (1)

This decomposition is important in comprehending the relationship
between bias and variance and the behaviour of a classifier. In general, an
inducer builds partitions in the description space in a certain way such that
can be considered as a family of functions H. For instance, most of decision
trees or rule induction inducers divide the space into rectangular regions
whereas neural nets can divide the space into more complex regions. In any
case, each inducer tries to select the best classifier b, using the training set,
from the set of functions H.

3.2 Ensembles

An ensemble consists of a set of individual classifiers whose predictions are
combined when predicting novel instances labels. Previous rescarch has
shown that an cnsemble is often more accurate than any of the individual
classifier in the ensemble 4.e., multiple classifiers have been shown to lead to
improved predictive accuracy when classifying instances that are not among
the training set.

There is considerable diversity in the methods used to assemble the
ensembles, including stacking [24], windowing [21], bagging [7], wagging [4],
and more recently boosting [22, 14, 15] and arcing [6, 8]. Usually, classifiers
arc combined using a majority or weighted vote mechanism. It has been
suggested that both bagging and boosting reduce error by reducing the
variance term in Equation 1 [8]. Also, [15] argue that boosting attempts

to reduce the crror in the bias term in the cquation since it focuses on
misclassified instances.

Considering the two most recent ensemble methods, in general, bagging
is almost always more accurate than a single classifier, but it is sometimes
much less accurate than boosting. On the other hand, boosting can create
cnsembles that are less accurate than a single classifier. In some situations,
boosting can overfit noisy datascts, thus decreasing its performance.

On the other hand, ensembles usually generate a large classifier, con-
trary as stated in the Ockham’s razor principle [16]. For example, in [1§],
using the Frey-Slater letter dataset [5] with 16 numeric features and 16000
instances, it is possible to achicve very good accuracy on the test set with
4000 instances by voting 200 classifiers. Including training and test sets, the
dataset requires less than 700 Kbytes. Although each individual classifier
requires 295 Kbytes of memory, an ensemble of 200 classifiers requires 58
Mbytes, more than 85 times greater than the datasct.

3.3 Symbolic Ensembles

As stated in [6], ensembles are perturb and combine (P&C) algorithms. Al-
though there are benefits in accuracy that can be obtained from the use of
cnsembles, since they usually reduce the error by reducing bias and vari-
ance, onc problem is the interpretability by humans. It can be noted that
combining symbolic classifiers into one single classifier by a majority (or
other) vote mechanism does not result into a symbolic classifier any more
i.e., an ensemble of symbolic classifiers is no longer symbolic.

This has motivated our work on trying to use the benefits from ensem-
bles while still keeping the symbolic component in the learning system. The
next section outlines the computational environment under development.

4 Architecture

This scction provides some basic ideas about our architecture since a full
description is beyond the scope of this paper. The idea used in our the
computational environment is to sample the original database (or to use
bagging if the database is too small). For each sample, a classifier is ex-
tracted from that sample. In this step, it is possible to use several different
inducers like ZD3 [20], C4.5 and €5.0 [21], CN2 [10, 11, 9] and Ripper [12]
thus leading to classifiers with different inductive bias and variance [2]. The
system is flexible enough to accept any other symbolic inducer.

After the induction step, each classifier is translated into a common-
syntax rule set similar to the CN'2 rule induction system. Then, rules can
be evaluated using a scparated test sample from the same database. Tt is
also possible to combine all rule sets individually extracted into one final
rule sct, using a greedy cover algorithm.

DB
_ connection

SQL
> Server

!

Graphical Usernterface (GUI)

<>
<+«—» | CN2
m
«—>
Perl Scripts CaE
———H N

Output

Figure 1: Computational Environment Architecture

Figure 1 shows the proposed client /server architecture. In the server
side, the SQL server component maintain databases. Actually, we arc using
the MySQL scerver which is a multi-user, multi-threaded, multi-platform
SQL database server [19]. MySQL is free software for non commercial
applications. It is also fast and robust, easily working with millions of
records and hundred of gigabytes.

The SQL server maintains datascts, classifiers as well as extracted rules
in the common-syntax format. It is also possible to import/export MySQL
tables from/to the MLC++ format [17]. Perl scripts are responsible to
perform necessary transformations among datasets, inducers, classifiers and
SQL scrver formats [23].

In the client side, a Graphical User Interface GUI manages the
server components. Initially, the user selects the original dataset to work
with. Then, data preprocessing can take place, thus arriving at a reduced
dataset. Besides a standard database connection from the client to the SQL
server, the system uses rsh and ftp TCP/IP protocols to activate the perl
scripts as well as to transfer resulting data between the client and server
compornents.

One advantage of this architecture is that the server components can
be spread out across several computers. This allows to achieve some degree
of parallelism in some situations. For example, the induction of classifiers
can be performed simultancously in different computers. Then, results arce

grouped into the SQL component for further analysis or processing. This
is a desirable feature for DM tasks since gigabytes of data arc frequently
available.

5 Concluding Remarks

In this work we described a computational environment under development
which addresses the problem of classification in DM whenever the result of
learning is expressed in the form of classification rules. Our proposed frame-
work assumes that the datasct is a normal relational table, which consists of
n records described by m distinet features (categorical or continuous) that
have been classified into K known classes.

Although many works have been published proposing new learning sys-
tems as well as modifications to existing ones, little attention has been given
to the pre and post-processing phases. One of the possible reasons for this
phenomena is the extensive use of ready-to-learn datasets for ML (as those
found in data repositories [5]) and the extensive use of accuracy to evaluate
the knowledge induced.

The emphasis of this environment and its software architecture is on
integration of DM operations, such as database access and selection, a pre-
processing phase typically interactive, ML algorithms that induce classifica-
tion rules, focusing on human understanding and cvaluation of the induced
knowledge, as well as on extensibility.

There arc many different methods for constructing classification rules
although no one method is universally the best since different application
domains lead to different problems, requiring different solutions. This being
the case, it is expected that a combination of these methods, as proposed
in this work, may vyield better classification rules. Such combinations can
be made in various ways. We consider simplicity of rules as a goal in itsclf,
although simplicity does not necessarily lead to greater accuracy

Other important issue considered is that the environment should pre-
scerve a friendly and casy to use interface to enable users and domain experts
to access the environment from both local and remote locations, and to
comment on and cvaluate result quality. This scalable and extensible envi-
ronment is based on the view of Data Mining as an interactive and iterative
process.

Acknowledgments: This research is partially supported by National Re-
scarch Councils Finep and CAPES, Silicon Graphics Brazil as well as FMRP-
USP and FAEPA-HCFMRP-USP.

References

[1] Baranauskas, J. A. and Monard, M. C. (2000a). Reviewing some ma-
chine learning concepts and methods. Technical Report 102, ICMC-USP.

ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA /rel_tec/Rt_102.ps.zip.

[2] Baranauskas, J. A. and Monard, M. C. (2000b). An
unified overview of six supervised symbolic machine
learning inducers. Technical — Report 103, ICMC-USP.

ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA /rel_tec/Rt_103.ps.zip.

[3] Batista, G. E. A. P. A., Carvalho, A. C. P. L., and Monard, M. C. (2000).
Applying one-sided sclection to unbalanced datascts. In Proceedings of
the Mezican Congress on Artificial Intelligence (MICAI), Lecture Notes
in Artificial Intelligence. Springer-Verlag. (in print).

[4] Baucr, E. and Kohavi, R. (1999). An cmpirical comparison of vot-
ing classification algorithms: Bagging, boosting, and variants. Machine
Learning, 36:105-142.

[5] Blake, C., Keogh, E., and Merz, C. J. (1998). UCI repository of machine
learning databases. http://www.ics.uci.edu/~mlearn/MLRepository.html.

[6] Breiman, L. (1996a). Arcing classifiers. Technical re-
port, Statistics Department, University of California,
ftp://ftp.stat.berkeley.edu/pub/users/breiman/.

[7] Breiman, L. (1996b). Bagging predictors. Machine Learning, 24(2):123—
140.

[8] Breiman, L. (1996¢). Bias, variance and arcing classifiers. Technical
Report 460, Statistics Department, University of California.

[9] Clark, P. and Boswell, R. (1991). Rule induction with CN'2: Some recent
improvements. In Kodratoft, Y., editor, Proceedings of the 5th European
Conference (EWSL 91), pages 151 163. Springer-Verlag.

[10] Clark, P. and Niblett, T. (1987). Induction in noise domains. In Bratko,
I. and Lavra¢, N., cditors, Proceedings of the Second European Working
Session on Learning, pages 11 30, Wilmslow, UK. Sigma.

[11] Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Ma-
chine Learning, 3(4):261 283.

[12] Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of
the Twelfth International Conference on Machine Learning, pages 115
123, San Francisco, CA. Morgan Kaufmann.

[13] Famili, A., Shen, W.-M., Weber, R., and Simoudis, E. (1997). Data
preprocessing and intelligent data analysis. Intelligent Data Analysis,
1(1). http://www.elsevier.com/locate/ida.

[14] Freund, Y. and Schapire, R. E. (1995). A dccision-theoretic general-
ization of on-line learning and an application to boosting. In Proceedings
of the Second European Conference on Computational Learning Theory,
pages 23-37. Springer-Verlag,.

[15] Freund, Y. and Schapire, R. E. (1996). Experiments with a new boost-
ing algorithm. In Proceedings of the Thirteenth International Conference
on Machine Learning, pages 123—-140, Lake Tahoe, California. Morgan
Kaufmann.

[16] Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Compu-
tational Learning Theory. Ellis Horwood.

[17] Kohavi, R., Sommerficld, D., and Dougherty, J. (1994). MLC++: A
Machine Learning Library in C++. IEEE Computer Socicty Press.

[18] Margincantu, D. D. and Dictterich, T. G. (1997). Pruning adaptive
boosting. In Proceedings of the Fourteenth International Conference on
Machine Learning, pages 211-218, San Francisco. Morgan Kaufmann.

[19] MySQL (2000). The MySQL server. http://www.mysqgl.com.

[20] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1:81-106. Reprinted in Shavlik and Dieterich (eds.) Readings in Machine
Learning.

[21] Quinlan, J. R. (1988). C4.5 Programs for Machine Learning. Morgan
Kaufmann, CA.

[22] Schapire, R. E. (1990). The strength of weak learnability. Machine
Learning, 5(2):197 227.

[23] Wall, L., Christiansen, T., and Schwartz, R. L. (1996). Programming
Perl. O’Reilly & Associates, Inc.

[24] Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5:241—
259.

