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Abstract Learning problems can be difficult for many reasons, one of
them is inadequate representation space or description language. Fea-
tures can be considered as a representational language; when this lan-
guage contains more features than necessary, subset selection helps sim-
plify the language. On the other hand, when this language is not sufficient
to describe the problem, Feature Construction helps enrich the language.
Feature Construction, also known as Constructive Induction, aims to dis-
cover missing information about the relationships between features and
augments the space of features by inferring additional features. Thus,
feature selection reduces the feature space while Feature Construction
expands the feature space. In both cases, the main idea is to improve
the representation space before searching for concept description, in or-
der to improve the overall prediction accuracy of the generated concept
description. This work is concerned with knowledge-driven Constructive
Induction, which uses domain knowledge provided by the expert to search
for a better representational space. The objective of this work is to pro-
pose an approach for practical Feature Construction when this is done
with the aid of the user or the expert. We describe a series of experiments
performed on four real world datasets using inducers C4.5rules and CN2.

Keywords: Constructive Induction, Machine Learning

1 Introduction

Conventional inductive-learning algorithms rely on existing, generally user pro-
vided, data to build their descriptions. Inadequate representation space or de-
scription language as well as errors in training instances can make learning prob-
lems difficult.



Features can be considered inadequate for the learning task when they are
weakly or indirectly relevant, conditionally relevant or inappropriately mea-
sured (Langley, 1996; Blum and Langley, 1997). If the provided features for
describing the training instances are inadequate, the learning algorithms are
likely to create excessively complex and inaccurate descriptions (Bloedorn and
Michalski, 1998).

However, these individually inadequate features can sometimes be combined
conveniently, generating new features which can turn out to be highly represen-
tative to the description of a concept. The process of constructing new features
is called Feature Construction or Constructive Induction (Michalski, 1978).

The objective of this work is to propose an approach for practical Feature
Construction when this is done with the aid of the user/expert. We also describe
a series of experiments performed using our approach on real world datasets
using the C4.5rules and CN2 inducers. The reported results include, for each
experiment, a description of the new features constructed, error rates, features
selected by each inducer and others.

This work is organized as follows: Sect. 2 gives some background about Fea-
ture Construction. Section 3 describes the proposed approach for Constructive
Induction while Sect. 4 describes the inducers and datasets used in the experi-
ments performed using our approach. Section 5 shows the results obtained from
these experiments and Sect. 6 presents some considerations about results. Fi-
nally, Section 7 gives some conclusions.

2 Constructive Induction

Feature Construction, also known as Constructive Induction — CI — is the
process of combining primitive features (from the original dataset) producing
new features possibly relevant to a concept description. In other words, CI is the
application of constructive operators, i.e. operators used to compound features
from the existing ones, resulting in the definition of one or more new features.

It is important to notice that, unlikely Feature Subset Selection where only
selected features are shown to the inductive algorithm, thus decreasing feature
search space (Kohavi and Sommerfield, 1995; Kohavi and John, 1997; Baranauskas
and Monard, 1999; Baranauskas et al., 1999), Constructive Induction increases
the feature search space.

Constructive Induction requires a decision about which constructive opera-
tors should be used as well as which primitive features should be combined using
the operators.

Another important observation is that, in general, the Constructive Induction
process is infeasible since the number of features which can be constructed is
a combinatorial function of the number of existing features multiplied by the
number of possible operators. Consequently, CI is feasible only when articulated
with heuristcs that may reduce the number of possible features and the number
of constructive operators which are going to be used to construct new features.
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Constructive Induction methods can be grouped according to the informa-
tion used to search for the best representation space as follows (Bloedorn and
Michalski, 1998; Wnek and Michalski, 1994; Wnek and Michalski, 1993):

1. data-driven constructive induction, based on analysis of the training data;
2. hypothesis-driven constructive induction, based on analysis of inductive hy-

pothesis. In this approach, useful concepts in the rules can be extracted and
used to define new features;

3. knowledge-driven constructive induction, based on domain knowledge pro-
vided by an expert;

4. multi-strategy constructive induction, based on two or more of the other
methods.

The Constructive Induction process can be guided and controlled by the
user/expert or can be automatically conducted by the learning system. In this
work, we focus on Constructive Induction guided by user/expert using thus the
knowledge-driven approach.

3 The Proposed Approach

We assume that the original dataset O is composed by m features {X0, X1, . . . , Xm−1}
and that k new features {f1, f2, . . . , fk} are constructed with the help of the
user/expert based on the original {X0, X2, . . . , Xm−1} features. The proposed
approach can be divided into the following three steps:

First step: Considering each one of the k new features {f1, f2, . . . , fk} the ex-
pert may suggest, the original dataset O is then augmented with each one of
them, thus given a set of k new datasets labeled as {O+f1, O+f2, . . . , O+fk}
containing m+1 features each one. Therefore, each augmented dataset O+fi

is composed by the original features {X0, X1, . . . , Xm−1} and the new feature
fi (1 ≤ i ≤ k) suggested by the expert i.e. O+fi = {X0, X1, . . . , Xm−1, fi}.

Second step: Each new dataset from the set {O+f1, O+f2, . . . , O+fk} is then
given to one (or more) inducer that generates a classifier. The idea is that
if the new feature fi is not present in the extracted classifier, this is an
indication that fi is not essential to the concept being learned by the in-
ducer (Michalski and Kaufman, 1998). In this case, dataset O+fi is not
considered for the next step. On the other hand, if the feature fi appears
in the classifier, then the augmented dataset O+fi is used in the next step.
Consequently, after this step a subset of augmented datasets that have been
generated in the first step and fulfills the second condition will be considered
in the third step.

Third step: In this step, the error estimation is performed as following de-
scribed. Despite any error estimate can be used, we suggest the K-fold strat-
ified cross-validation (SCV) since it is a very well known measure for error
estimation in the research community and it allows assuming a normal dis-
tribution for error comparison as shown below.
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First of all, a K-fold stratified cross-validation is performed once in the orig-
inal dataset O to estimate its error EO. After that, a K-fold stratified cross-
validation is performed in each augmented dataset that fulfills the second
step test. Labeling the error for dataset O+fi as Ei, then only augmented
datasets that have an error difference ad(Ei−EO) < 0 are selected for further
investigation, since this suggests that the new feature, besides appearing in
the classifier, has also increased the classifier accuracy. The difference be-
tween Ei and EO in standard deviations (ad) is given by (1), where mean is
the mean error of the K-folds stratified cross-validation and sd is its corre-
sponding standard deviation.

ad(Ei − EO) =
mean(Ei)−mean(EO)√

sd(Ei)
2
+ sd(EO)

2

2

(1)

Considering this whole process as a general methodology for applying Con-
structive Induction as shown in Fig. 1, the ideal situation would be when the
primitive features, used to construct the new ones, are not selected during the
second step by the inducer. However, this may not be the case. A possible rea-
son for this would be that the constructed features do not capture perfectly the
information embedded in each individual feature for the specific inducer or is
equivalent in predictive power to (some of) the original ones. Another reason for
this would be that the datasets used have already been worked out, so that the
original features are, on its own, the most relevant ones.

4 Experimental Setup

Using the proposed approach, a series of experiments were performed, in order
to evaluate the effectiveness of the new constructed features, using inducers and
datasets described in the next sections (Lee and Monard, 2000). It is important
to observe that the original dataset has not been preprocessed in any way, for
example by removing or replacing missing values or transforming nominal to
numerical features. Furthermore, each individual inducer was run with default
options setting for all parameters, i.e. no attempt was made to tune any inducer.

4.1 Inducers

Two inducers, C4.5rules and CN2, present in the MLC++ library (Kohavi et al.,
1996), have been used in this work. These inducers are well known in the Ma-
chine Learning community and they belong to the eager learning approach where
the algorithms greedily compile the training data into an intentional concept de-
scription (Aha, 1997).
C4.5rules (Quinlan, 1993) examines the original decision tree produced by

C4.5 and derives from it a set of rules of the form L → R. The left-hand side L
is a conjunction of feature-based tests and the right-hand side is a class. One of
the classes is also designated as the default class.
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Figure1. The Proposed Approach

It is important to note that C4.5rules does not simply rewrite the tree to
a collection of rules. In fact, it generalizes the rules by deleting superfluous
conditions — irrelevant conditions that do not affect the conclusion — without
affecting its accuracy, leaving the more appealing rules.
CN2 (Clark and Niblett, 1987; Clark and Niblett, 1989; Clark and Boswell,

1991) is a Machine Learning algorithm that directly induces ‘if <complex> then
<class>’ rules in domains where there might be noise. Each <complex> is a
disjunction of conjunctions. For the experiments we have used the unordered
rules CN2 algorithm. C4.5rules as well as CN2 can handle missing (or unknown)
values.

4.2 Datasets

Experiments were conducted on four real world domains. Datasets pima, cmc
and hepatitis are from the UCI Irvine Repository (Blake et al., 1998). The smoke
dataset was obtained from the URL http://lib.stat.cmu.edu/datasets/csb/. The
criterion used to choose these four datasets is related to our user/expert domain
since we are interested in his/her assistance to construct new features.
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Dataset pima is a subset of a larger database maintained by the National
Institute of Diabetes and Digestive and Kidney Diseases. All patients are females
at least 21 years old of Pima Indian heritage living near Phoenix, Arizona, USA.
The problem is to predict whether a patient would test positive for diabetes
according to World Health Organization (WHO) criteria — if the 2-hour post-
load plasma glucose is at least 200 mg/dl at any survey examination or if found
during routine medical care — given a number of physiological measurements
and medical test results.

Dataset cmc is composed by a subset of the 1987 National Indonesia Contra-
ceptive Prevalence Survey. The samples are married women who were either not
pregnant or do not know if they were at the time of the interview. The prob-
lem is to predict the current contraceptive method choice (no use, long-term
methods or short-term methods) of a woman based on her demographic and
socioeconomic characteristics.

Smoke is a survey dataset (Bull, 1994) concerned with the problem of pre-
dicting attitude toward restrictions on smoking in the workplace (prohibited,
restricted or unrestricted) based on by-law-related, smoking-related and sociode-
mographic covariates.

Dataset hepatitis is for predicting life expectation of patients with hepatitis.
Table 1 summarizes the datasets used in this work. It shows, for each dataset,

the number of instances (#Instances), number and percentage of duplicate (ap-
pearing more than once) or conflicting (same feature values but different class)
instances, number of features (#Features) continuous and nominal, class distri-
bution, the majority error and if the dataset have at least one missing value.
Datasets are presented in ascending order of the number of features.

4.3 Experiments

The performed experiments follow the three basic steps of our approach. In
the first step, after analyzing each dataset, the user/expert suggested two new
features for datasets pima, cmc and smoke and just one new feature for dataset
hepatitis as Table 2 shows.

In the second step, C4.5rules and CN2 were run once using as training set
all instances in each of these seven new datasets. In our experiments, the rules
induced by C4.5rules and CN2 used features f1 and f2 for all datasets (for dataset
hepatitis, the only one feature constructed, f1, also appeared in the extracted
classifier). Therefore, no augmented dataset was discarded in this step.

Next, in the third step, the two inducers C4.5rules and CN2 were run on
each original dataset as well as on the seven new datasets and the error rate
was measured using 10-fold stratified cross-validation. After this, we selected for
further investigation only the datasets whose accuracies improved comparing to
the original datasets accuracies.
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Table1. Datasets Summary Descriptions

Dataset # Instances Duplicate or # Features Class Class % Majority Missing
conflicting (cont., nom.) Error Values

pima 769 1 (0.13%) 8 (8, 0) 0 65.02% 34.98% N
1 34.98% on value 0

cmc 1473 115 (7.81%) 9 (2, 7) 1 42.70% 57.30% N
2 22.61% on value 1
3 34.69%

smoke 2855 29 (1.02%) 13 (2, 11) 0 5.29% 30.47% N
1 25.18% on value 2
2 69.53%

hepatitis 155 0 (0%) 19 (6, 13) die 20.65% 20.65% Y
live 79.35% on value live

Table2. Original Datasets Augmented with Constructed Features

Original Dataset Augmented Datasets

pima pima+f1 pima+f2

cmc cmc+f1 cmc+f2

smoke smoke+f1 smoke+f2

hepatitis hepatitis+f1 —

5 Experimental Results

In this section, experimental results obtained are presented in one table for
each dataset. It shows, for each original/augmented dataset and inducer, the
dimensionality of the dataset given to the inducer (Total #F); the individual
features used by the inducer to represent the concept1; the number of features
selected by the classifier (#F) and the proportion of the selected features (%F).
The C4.5rules inducer is represented as C4.5r.

Also, the table shows the error rate (Error) of each inducer (mean and stan-
dard deviation) using 10-fold stratified cross-validation, including the difference
in standard deviations (ad) — computed by Equation 1 — between the classi-
fier extracted using the derived datasets and the one extracted using original
dataset. Thus, if this value is positive (negative) the classifier constructed using
the original (derived) dataset outperforms the one constructed using the derived
(original) dataset. However, for one classifier to outperform the other at 95%
confidence level this value should be greater than 2, or less than −2, respec-
tively. The results for datasets pima, cmc, smoke and hepatitis are presented in
Tables 3, 4, 5 and 6, respectively.

1 Note that features indicated with ‘◦’ refer to original dataset features while the ones
indicated with ‘•’ refer to new constructed features.
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5.1 Pima and Derived Datasets

Two new features were constructed for this dataset with the help of the expert:

– f1: this features verifies if glucose and diastolic blood preassure are out of
normal levels. It combines two primitive features: plasma (feature #1) and
diastolic (feature #2).

– f2: this feature verifies if glucose is out of the normal level and if 2-hour serum
insulin is not present. It combines two primitive features: plasma (feature #1)
and two (feature #4).

Table3. Pima Before and after Constructive Induction

Feature (pima, (pima, (pima+f1, (pima+f1, (pima+f2, (pima+f2,
Number C4.5r) CN2) C4.5r) CN2) C4.5r) CN2)

#0 ◦ ◦
#1 ◦ ◦ ◦ ◦ ◦ ◦
#2 ◦ ◦ ◦ ◦ ◦ ◦
#3 ◦ ◦ ◦
#4 ◦ ◦ ◦ ◦
#5 ◦ ◦ ◦ ◦ ◦ ◦
#6 ◦ ◦ ◦ ◦ ◦ ◦
#7 ◦ ◦ ◦ ◦ ◦ ◦

#8 (f1) •
#9 (f2) • •

Total #F 8 8 9 9 9 9

#F 5 8 6 7 7 9

%F 62.50% 100.00% 66.67% 77.78% 77.78% 100.00%

Error 26.00±1.03 25.38±1.38 25.61±1.12 25.90±1.15 26.52±1.14 25.77±1.33

ad −0.36 0.41 0.48 0.29

Looking at Table 3, it can be observed that feature f1 is nonessential for CN2
and there is only one slight improvement using pima+f1 with C4.5rules. Also,
it is possible to note that in all cases where the new feature was selected, the
original ones have been selected too. Besides occuring for dataset pima, this also
occurs for datasets cmc and smoke but not for hepatitis. A small degradation in
performance can be seen for pima+f1 with CN2 although the new feature has
been not selected.

5.2 Cmc and Derived Datasets

Two new features were constructed for this dataset with the help of the user:

– f1: this feature shows how equal or different the educational level of wife
and husband are. It combines two primitive features: wedu (feature #1) and
hedu (feature #2).
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– f2: this feature shows if the wife has a standard of living compatible with
her educational level. It combines two primitive features: wedu (feature #1)
and stdliv (feature #7).

Table4. Cmc Before and after Constructive Induction

Feature (cmc, (cmc, (cmc+f1, (cmc+f1, (cmc+f2, (cmc+f2,
Number C4.5r) CN2) C4.5r) CN2) C4.5r) CN2)

#0 ◦ ◦ ◦ ◦ ◦ ◦
#1 ◦ ◦ ◦ ◦ ◦ ◦
#2 ◦ ◦ ◦ ◦ ◦ ◦
#3 ◦ ◦ ◦ ◦ ◦ ◦
#4 ◦ ◦ ◦ ◦ ◦ ◦
#5 ◦ ◦ ◦ ◦ ◦ ◦
#6 ◦ ◦ ◦ ◦ ◦ ◦
#7 ◦ ◦ ◦ ◦ ◦ ◦
#8 ◦ ◦ ◦ ◦ ◦ ◦

#9 (f1) •
#10 (f2) • •
Total #F 9 9 10 10 10 10

#F 9 9 9 10 10 10

%F 100.00% 100.00% 90.00% 100.00% 100.00% 100.00%

Error 45.90±1.38 49.64±1.01 47.87±1.54 49.50±1.04 46.37±0.97 52.22±1.09

ad 1.09 −0.68 −0.07 1.85

As can be seen in Table 4, although feature f1 has not been selected for
dataset cmc+f1 using C4.5rules, the performance has degraded when compared
to the original dataset. Dataset cmc+f2 using CN2 has degraded considerably
but not at 95% confidence level. Both cmc+f1 using CN2 and cmc+f2 using
C4.5rules have increased performance slightly.

5.3 Smoke and Derived Datasets

Two new features were constructed for this dataset with the help of the user:

– f1: this feature represents the status of the interviewed person at the time of
survey. It combines four primitive features: smoking1 (feature #5), smoking2
(feature #6), smoking3 (feature #7) and smoking4 (feature #8).

– f2: this feature shows a comparison between the place the interviewed person
works with respect to the city of Toronto-Canada, if s/he works at home or
not and if s/he lives in the city of Toronto or outside it. It combines three
primitive features: work1 (feature #2), work2 (feature #3) and residence
(feature #4).
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Table5. Smoke Before and after Constructive Induction

Feature (smoke, (smoke, (smoke+f1, (smoke+f1, (smoke+f2, (smoke+f2,
Number C4.5r) CN2) C4.5r) CN2) C4.5r) CN2)

#0 ◦ ◦ ◦ ◦ ◦ ◦
#1 ◦ ◦ ◦ ◦ ◦ ◦
#2 ◦ ◦ ◦ ◦ ◦ ◦
#3 ◦ ◦ ◦ ◦ ◦ ◦
#4 ◦ ◦ ◦ ◦ ◦ ◦
#5 ◦ ◦ ◦ ◦ ◦ ◦
#6 ◦ ◦ ◦ ◦ ◦ ◦
#7 ◦ ◦ ◦ ◦ ◦
#8 ◦ ◦ ◦ ◦ ◦ ◦
#9 ◦ ◦ ◦ ◦ ◦ ◦
#10 ◦ ◦ ◦ ◦ ◦ ◦
#11 ◦ ◦ ◦ ◦ ◦ ◦
#12 ◦ ◦ ◦ ◦ ◦ ◦

#13 (f1) •
#14 (f2) • •
Total #F 13 13 14 14 14 14

#F 12 13 13 14 14 14

%F 92.31% 57.40% 92.86% 100.00% 100.00% 100.00%

Error 32.71±0.65 31.87±0.35 33.28±0.80 31.56±0.45 32.93±0.49 31.49±0.45

ad 0.78 −0.77 0.38 −0.94

Table 5 shows that the insertion of the two new features individually has
increased the accuracy for the CN2 inducer but not for C4.5rules. The new feature
f1 has degraded performance for C4.5rules even f1 was not selected.

5.4 Hepatitis and Derived Datasets

One new feature was constructed for this dataset with the help of the expert:

– f1: indicates if the pacient probably will live or die. It combines three primi-
tive features: liver-firm (feature #8), ascites (feature #11) and varices (fea-
ture #12).

In Table 6 we can observe that the new feature f1 was responsible for one (fea-
ture #12) original feature not appearing in the classifier for dataset hepatitis+f1

with C4.5rules, even causing an increase in performance. For CN2, the new fea-
ture has dramatically changed the subset of features used in the extracted clas-
sifier when compared with the one extracted from the original dataset.

6 Discussion

Table 7 presents a summary of the results obtained through the three steps
performed in the experiments reported in this work. This table shows, for each
one of the augmented datasets, the following information:
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Table6. Hepatitis Before and after Constructive Induction

Feature (hepatitis, (hepatitis, (hepatitis+f1, (hepatitis+f1,
Number C4.5r) CN2) C4.5r) CN2)

#0 ◦ ◦ ◦ ◦
#1 ◦ ◦ ◦
#2

#3 ◦ ◦
#4 ◦ ◦ ◦
#5 ◦ ◦ ◦
#6

#7 ◦ ◦ ◦
#8 ◦ ◦ ◦
#9

#10 ◦ ◦ ◦ ◦
#11 ◦ ◦ ◦
#12 ◦
#13 ◦
#14 ◦
#15 ◦ ◦ ◦ ◦
#16 ◦ ◦ ◦
#17 ◦ ◦ ◦
#18 ◦

#19 (f1) •
Total #F 19 19 20 20

#F 12 8 10 13

%F 63.16% 42.11% 50.00% 65.00%

Error 21.29±2.99 18.25±3.83 18.00±3.74 17.50±2.04

ad −0.97 −0.24

– A - the names of the datasets;
– B - total number of features in the dataset;
– C - the first number, in brackets, indicates the number of primitive features

used to construct the new one followed by the number which identifies the
new constructed feature (NewF) as well as the primitive features used for
that task (PrimF);

– D - features used by C4.5rules;
– E - features used by CN2;
– F - if accuracies measured by 10-fold stratified cross-validation improved,

using C4.5rules and/or CN2 on the augmented datasets. If so, this is indicated
by the inducer that had the accuracies improved, i.e. where ad(Ei−EO) < 0
computed by Equation 1.

Note that features in underlined bold style correspond to the new constructed
features. Although there were improvements in accuracy, the results would only
fit into the perfect situation if during the second step these primitive features,
used to construct the new ones, were not selected by the inducers.
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Table7. Results Summary

Step 1 Step 2 Step 3

A B C D E F
Dataset NewF → PrimF C4.5rules CN2 ad(Ei − EO) < 0

pima+f1 9 (2) 1 2 5 6 1 2 3 4 C4.5rules
8 → 1 2 7 8 5 6 7

pima+f2 9 (2) 1 2 4 5 0 1 2 3
9 → 1 4 6 7 9 4 5 6 7 9

cmc+f1 10 (2) 0 1 2 3 0 1 2 3 CN2
9 → 1 2 4 5 6 7 4 5 6 7

8 8 9

cmc+f2 10 (2) 0 1 2 3 0 1 2 3 C4.5rules
10 →1 7 4 5 6 7 4 5 6 7

8 10 8 10

smoke+f1 14 (4) 0 1 2 3 0 1 2 3 CN2
13 → 5 6 7 8 4 5 6 7 4 5 6 7

8 9 10 8 9 10
11 12 11 12 13

smoke+f2 14 (3) 0 1 2 3 0 1 2 3 CN2
14 → 2 3 4 4 5 6 7 4 5 6 7

8 9 10 11 8 9 10 11
12 14 12 14

hepatitis+f1 20 (3) 0 1 4 5 0 1 7 10 C4.5rules
19 → 8 11 12 7 8 10 11 12 13 CN2

11 15 16 14 15 16
17 18 19

12



Table 7 shows that from the 14 cases analyzed (7 datasets and 2 inducers),
there were 7 cases (50%) where some improvement in accuracy was obtained
although not at the 95% confidence level. Datasets smoke+f1 and smoke+f2

using CN2 have presented the larger increase in accuracy, followed by dataset
hepatitis+f1 using C4.5rules. On the other hand, datasets cmc+f1 using C4.5rules
and cmc+f2 using CN2 have presented a considerable degradation in perfor-
mance. Note that in the case dataset cmc+f1 using C4.5rules, the new feature
was not selected but it did decrease performance. Theoretical analysis and ex-
pertimental studies indicate that many algorithms scale poorly to domains with
large number of features that are irrelevant, redundant or both (Langley, 1996).
This may suggest that Feature Subset Selection (Kohavi and Sommerfield, 1995;
Kohavi and John, 1997) and Constructive Induction can be used together.

Also, none of the new constructed features shows a high strength on its own.
If a constructed feature appears in the concept learned it can be observed that
at least one of the primitive features is also present.

As the number of new features is small for all datasets, we decide to proceed
the analysis, removing the original features used to compose the new feature from
each augmented dataset for further investigation (results not shown). For this
situation, only two datasets presented an improvement in accuracy without the
primitive feature: smoke+f2 using C4.5rules (ad = −0.60) and CN2 (ad = −0.76)
as well as hepatitis+f1 using CN2 (ad = −0.25). In these cases, the classifiers
not only had a better performance using the new constructed feature but also
when primitive features (those used to create the new feature) were removed,
the accuracy still remained better than the one obtained using just the original
set of features.

7 Conclusions

The Constructive Induction approach is based on domain knowledge provided
by an user/expert: given the primitive features of the original datasets, the
user/expert suggested freely the construction of some new features.

This work proposes a systematic approach for knowledge-driven Constructive
Induction based on three steps: (1) creating and adding new features suggested
by an user/expert; (2) applying an inducer to the datasets augmented with new
features individually and evaluating if the new feature appears on the extracted
classifier and finally (3) evaluating increase in performance in the extracted clas-
sifier due to the introduction of the new feature. Augmented dataset, and con-
sequently associated new features, that fulfills all steps are selected for further
investigation.

The ideal situation would be when the primitive features are not selected
during the second step. However, this may not be the case since the new feature
may not capture the information embedded in each of the original features for the
specific inducer or it is equivalent in predictive power to (some of) the original
ones or even the dataset may have already been worked out, so that the original
features are, on its own, the most relevant ones.

13



This work also shows some empirical results of knowledge-driven Constructive
Induction. Accuracy and the set of features selected were evaluated when given
different sets of features to C4.5rules and CN2. A feature is considered relevant
for the learning task if it is used by one of these algorithms to induce the rules.

Results show that, in spite of having an user/expert help, it is difficult to
construct new features that are really relevant to learn the concept embedded in
these datasets. For future work we suggest that it is necessary to go beyond the
available dataset repositories and work on real world datasets that have been
not pre-processed for knowledge discovery applications.

Acknowledgments: We are grateful to Wu Feng Chung, MD. for the advice in
the construction of new features for datasets pima, hepatitis as well as valious
suggestions for dataset cmc. We also wish to thank Jaqueline Brigladori Pugliesi
for helpful comments on the draft of this paper. This research is partially sup-
ported by National Research Councils Finep and CAPES as well as FMRP-USP
and FAEPA-HCFMRP-USP.

14



References

Aha, D. W. (1997). Lazy learning. Artificial Intelligence Review, 11:7–10.
Baranauskas, J. A. and Monard, M. C. (1999). The MLC++

wrapper for feature subset selection using decision tree,
production rule, instance based and statistical inducers:
Some experimental results. Technical Report 87, ICMC-USP.
ftp://ftp.icmc.sc.usp.br/pub/BIBLIOTECA/rel tec/Rt 87.ps.zip.

Baranauskas, J. A., Monard, M. C., and Horst, P. S. (1999). Evalua-
tion of CN2 induced rules using feature selection. Argentine Sympo-
sium on Artificial Intelligence (ASAI/JAIIO/SADIO), pages 141–154.
http://www.fmrp.usp.br/∼augusto/ps/ASAI99.web.ps.zip.

Blake, C., Keogh, E., and Merz, C. (1998). Uci irvine repository of machine
learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Bloedorn, E. and Michalski, R. S. (1998). Data-Driven Construtive Induction.
IEEE Intelligent Systems, 13(2):30–37. March/April 1998.

Blum, A. L. and Langley, P. (1997). Selection of relevant features and examples
in machine learning. Artificial Intelligence, pages 245–271.

Bull, S. (1994). Analysis of attitudes toward workplace smoking restrictions.
Case Studies in Biometry, pages 249–271.

Clark, P. and Boswell, R. (1991). Rule induction with CN2: Some recent
improvements. In Kodratoff, Y., editor, Proceedings of the 5th European
Conference EWSL 91, pages 151–163. Springer-Verlag.

Clark, P. and Niblett, T. (1987). Induction in noise domains. In Bratko, I. and
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