I OLIMPÍADA REGIONAL DE MATEMÁTICA DE RIBEIRÃO PRETO

Nível III

Ensino Médio

 1^a FASE - 29 de abril de 2006

GABARITO

No da Questão	Resposta
Questão No 1	D
Questão No 2	С
Questão No 3	E
Questão No 4	A
Questão No 5	D
Questão No 6	С
Questão No 7	D
Questão No 8	D
Questão No 9	D
Questão No 10	С
Questão No 11	D
Questão No 12	Е

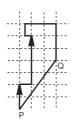
- Cada questão da primeira fase vale 1 ponto (total de pontos do nível III = 12 pontos)
- Aguarde a publicação da Nota de Corte de promoção à segunda fase no site www.ffclrp.usp.br/dfm

1. Basta observar que
$$f(3) = 1$$
, $f(1) = 4$, $f(4) = 5$ e $f(5) = 3$.
Assim, $f(f(f(f(3)))) = f(f(f(1))) = f(f(4)) = f(5) = 3$, logo podemos ver que

$$\underbrace{f(f(\ldots(f(f(3)))\ldots))}_{2006 \text{ vezes}} = \underbrace{f(f(\ldots(f(f(3)))\ldots))}_{2002 \text{ vezes}} = \underbrace{f(f(\ldots(f(f(3)))\ldots))}_{1998 \text{ vezes}}$$
 como 2006 = 501 × 4 + 2 então

$$\underbrace{f(f(\ldots(f(f(3)))\ldots))}_{2006 \text{ vezes}} = \underbrace{f(f(\ldots(f(f(3)))\ldots))}_{501\times4+2 \text{ vezes}} = f(f(3)) = 4$$

Resposta: (D)


2. Iniciamos a contagem a partir de 1001 e vamos até 9999. Como a metade destes números é ímpar, temos:

$$\frac{9999 - 1001}{2} + 1 = \frac{8998}{2} + 1 = 4499 + 1 = 4500$$

OBS: Pode-se ainda ser resolvido através de análise combinatória ou progressão aritmética.

Resposta: (C)

3. Se a distância de P a Q é denotada por \overline{PQ} , então pelo teorema de Pitágoras temos que $\overline{PQ}^2=3^2+4^2$, e portanto, $\overline{PQ}=5$.

Resposta: (E)

4. Note-se que

$$x = 1 + \frac{1}{2} \left(1 + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^{20}} + \dots \right) = 1 + \frac{1}{2}x$$

Portanto, x = 2

Resposta: (A)

5. Basta observar que o raio do semicírculo é a diagonal do quadrado ABCD. Então:

$$\text{\'A}rea = \frac{\pi(a\sqrt{2})^2}{2} - a^2 = a^2(\pi - 1)$$

Resposta: (D)

6. Se o número de pessoas é denotado por x e o valor total do pacote por P, então P = P(x) = (200 - 2(x - 50))x, para $50 \le x \le 80$.

Basta fazer P(x) = 11050 e obtêm-se que x = 65 ou x = 85. Como $x \le 80$, segue

Basta fazer P(x)=11050 e obtêm-se que x=65 ou x=85. Como $x\leq 80$, segue que x=65.

Resposta: (C)

7. Como $3<\sqrt{12}<4$, por definição $[\sqrt{12}]=3$. Assim, $\frac{[\sqrt{12}]}{2}=\frac{3}{2}=1,5$ e novamente por definição $[\frac{[\sqrt{12}]}{2}]=1$.

Resposta: (D)

8. Uma maneira trabalhosa é efetuar as somas diretamente

$$12 + 4 + 4 + \dots + 4 = 68$$
, (somando quatorze vezes o 4)

$$12 + 16 + 20 + \dots + 64 + 68 = 600.$$

Podemos ter menos trabalho olhando de outra maneira as somas acima. Quanto a primeira

$$12 + 4 + 4 + \dots + 4 = 12 + 4 \times 14 = 12 + 56 = 68.$$

Já para a segunda, observamos que

$$12 + 16 + 20 + \dots + 64 + 68 = 600$$

 $68 + 64 + \dots + \dots + 16 + 12 = 600$

Somando coluna a coluna os termos do lado esquerdo, obtemos 80. Assim, o resultado pode ser encontrado por $\frac{80\times15}{2}=600$. (Conhecida como soma de uma progressão aritmética.)

Resposta: (D)

9. Como
$$\frac{24}{5} = 4 + \frac{4}{5} = 4 + \frac{1}{\frac{5}{4}} = 4 + \frac{1}{1 + \frac{1}{4}} = 4 + \frac{1}{1 + \frac{1}{3+1}}$$
.

Logo podemos dizer que $A=4,\ B=1$ e C=3. Assim, A+2B+3C=15 Resposta: (D)

10. Se x for o valor total da compra (sem o desconto), então o valor pago por Jairzinho (com o desconto) é:

$$x - \frac{15}{100} \times \frac{2}{5}x = 98,70$$

Resolvendo temos que x = 105

Resposta: (C)

11.

$$x^{x\sqrt{x}} = (x\sqrt{x})^x
 x^{x x^{1/2}} = (x x^{1/2})^x
 x^{x^{3/2}} = (x^{3/2})^x
 x^{x^{3/2}} = x^{\frac{3}{2}x}$$

Como x > 1 então necessariamente a igualdade anterior implica que:

$$\begin{array}{rcl} x^{3/2} & = & \frac{3}{2}x \\ x^{3/2} - \frac{3}{2}x & = & 0 \\ x(x^{1/2} - \frac{3}{2}) & = & 0 \end{array}$$

Novamente, como x > 1, então $x^{1/2} - \frac{3}{2} = 0$. Assim $x = \frac{9}{4}$, logo 60x = 135 Resposta: (D)

- 12. Segue da tabela formada que
 - $\mathbf{2}$ 3* 5* 1 4 7^* 8 9* 10*12* 11 **13** 14^{*} 15^{*} **16 17** 18* **19** 20^{*} 21* **22 23** 24*25* **26** 27*28* **29** 30* 31 3233* **34** 35*36* **37** 38 39*40*42* 45* 47 48* 49* 50* 41 43 44 46 51* 52**53** 54*55* 56*57* 58 59 60*

de 1 até 53 temos as 25 páginas restantes. Logo as únicas possíveis opções são

- $1, 2, 3, \ldots, 53$ (53 páginas no caderno)
- $1, 2, 3, \dots, 53, 54$ (54 páginas no caderno)
- $1, 2, 3, \ldots, 53, 54, 55$ (55 páginas no caderno)
- $1, 2, 3, \dots, 53, 54, 55, 56$ (56 páginas no caderno)
- $1, 2, 3, \ldots, 53, 54, 55, 56, 57$ (57 páginas no caderno)

Resposta: (E)