V OLIMPÍADA REGIONAL DE MATEMÁTICA

Nível III

Ensino Médio

DE RIBEIRÃO PRETO

FASE DE SELEÇÃO - 15 a 17 de setembro de 2010

- Cada questão vale 1 ponto (total de pontos do nível III-fase de seleção = 10 pontos).
- Caro Professor, guarde a prova e os rascunhos dos seus alunos. Lembrese que a Comissão Organizadora poderá solicitar em qualquer momento a prova resolvida pelos alunos. Lembre-se também que o dia 27 de setembro é a data limite para o envio do relatório da Fase de Seleção. O referido relatório permitirá à Comissão Organizadora decidir a Nota de Corte para a Fase Final. A Nota de Corte será disponibilizada no dia 30 de setembro no site oficial do evento http://dfm.ffclrp.usp.br/mat/olimpiada.

GABARITO

No da Questão	Resposta
Questão No 1	D
Questão No 2	A
Questão No 3	С
Questão No 4	D
Questão No 5	A
Questão No 6	D
Questão No 7	С
Questão No 8	В
Questão No 9	Е
Questão No 10	A

1. Observamos primeiramente que $8 \times 50 = 400$ e que $7 \times 57 = 399$. Ou seja, temos 50 múltiplos de 8 e 57 múltiplos de 7 que são menores que o número 400. Porém, como $mmc\{7,8\} = 56$, temos sete números menores que 400 que são múltiplos de 7 e 8 ao mesmo tempo. Como 50 + 57 - 7 = 100, temos que 400 é o centésimo número escrito .

Resposta: (D)

2. Como $4500 \div 13 = 346 + \frac{2}{13} < 347$, e desde que não teremos postos nos extremos da praia, 12 é o número mínimo de postos necessários, sendo que a distância $d = 346 + \frac{2}{13}$.

Resposta: (A)

3. Suponhamos que a distância percorrida na reta seja d Km e a distância percorrida na subida até chegar no topo do morro seja h Km. Se tempo=distância/velocidade, então

$$\frac{d}{4} + \frac{h}{3} + \frac{h}{6} + \frac{d}{4} = 6,$$

ou seja, 3d + 4h + 2h + 3d = 6d + 6h = 72, portanto d + h = 12. Assim a distância total percorrida é 2(d + h) = 24 Km.

Resposta: (C)

4. Considere dois números a e b naturais , distintos do zero. Pode-se provar que

$$a+b \le ab+1$$
.

De fato,

$$a + b = \underbrace{1 + \ldots + 1}_{a-vezes} + \underbrace{1 + \ldots + 1}_{b-vezes} = \underbrace{1 + \underbrace{1 + \ldots + 1}_{(a-1)-vezes} + \underbrace{1 + \ldots + 1}_{b-vezes}}_{b-vezes} + \underbrace{1 + \ldots + 1}_{(a-1)-vezes} + \underbrace{1 + \ldots + 1}_{b-vezes} + \underbrace{1 + \ldots + 1}_{b-vezes} = \underbrace{1 + \underbrace{1 + \ldots + 1}_{a-vezes}}_{b-vezes} = \underbrace{1 + \underbrace{1 + \ldots + 1}_{a-vezes}}_{b-vezes} = \underbrace{1 + ab}$$

Portanto, considerando-se o produto de um milhão de números naturais igual a um milhão, contendo a e b, substituindo-se $a \times b$ por $(ab) \times 1$ obtêm-se assim, outro produto de um milhão de números naturais igual a um milhão, porém com soma maior.

O processo acima pode ser repetido no máximo 999.999 vezes e, então, o produto de soma maior possível é $1.000.000 \times \underbrace{1 \times \ldots \times 1}_{999.999-vezes}$, cuja soma é 1.999.999.

Resposta: (D)

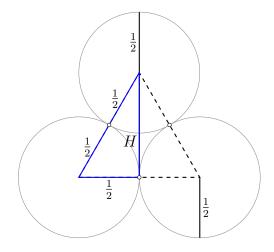
5. Pelo teorema de Pitágoras, sabemos que a medida \boldsymbol{y} deve satisfazer

$$(4-y)^2 + (4,5)^2 = 5^2.$$

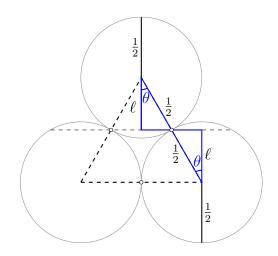
Assim, obtemos uma equação de grau dois em y, a saber, $y^2-8y+\frac{45}{4}=0$. Pela fórmula de Bhaskara, $y=4-\frac{\sqrt{19}}{2}$. Ainda, como $4<\sqrt{19}<5$, segue $-\frac{5}{2}<-\frac{\sqrt{19}}{2}<-2$ e $\frac{3}{2}< y=4-\frac{\sqrt{19}}{2}<2$. Ou seja, y>1,5.

Resposta: (A)

6. Apresentamos duas maneiras de responder esta pergunta.



Resposta 1: $h=H+\frac{1}{2}+\frac{1}{2}.$ Utilizando Pitágoras observamos que $H=\frac{\sqrt{3}}{2},$ logo $h=\frac{\sqrt{3}}{2}+1.$



Resposta 2: $h=2\ell+\frac{1}{2}+\frac{1}{2}$, sendo $\ell=\cos\theta\cdot\frac{1}{2}$. Observamos que $\theta=\frac{\pi}{6}$, logo $\cos\theta=\frac{\sqrt{3}}{2}$, portanto $h=\frac{\sqrt{3}}{2}+1$.

Resposta: (D)

7. Dividimos o problema em dois casos:

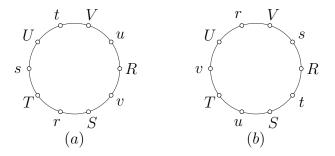
10. Caso: Vamos supor que a cor utilizada para pintar as bolinhas de número 1 e 4 são iguais. Para a bolinha de número 2 temos 3 possibilidades, dado que a cor da bolinha de número 1 já está escolhida. Entretanto, como as cores das bolinhas de número 2 e número 4 são diferentes, temos apenas 2 possibilidades de cores para a bolinha de número 3. Para a bolinha de número 5, temos 3 possibilidades, dado que as bolinhas de número 1 e 4 têm a mesma cor. Logo, temos, nesta situação, $4 \times 3 \times 2 \times 1 \times 3 = 72$ possibilidades.

20. Caso: Vamos supor que a cor utilizada para pintar a bolinha de número 1 seja diferente da cor utilizada para pintar a bolinha de número 2 seja igual a cor utilizada para pintar a bolinha de número 2 seja igual a cor utilizada para pintar a bolinha de número 3 e 2 possibilidades para a bolinha de número 5. Logo, $4 \times 1 \times 3 \times 3 \times 2 = 72$ possibilidades. Agora, se a cor utilizada para pintar a bolinha de número 4 for diferente da cor utilizada para pintar a bolinha de número 2, como esta também deve ser diferente da bolinha de número 1, temos 2 possibilidades de cores para a bolinha de número 2. Também as bolinhas de número 3 e 5 têm 2 possibilidades de cores, assim, neste caso, $4 \times 2 \times 2 \times 3 \times 2 = 96$ possibilidades.

Portanto, João poderia pintar esta figura de 72 + 72 + 96 = 240 maneiras diferentes.

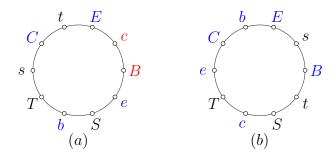
Resposta: (C)

8. Dispomos os homens na sequência R, S, T, U e V, onde inicialmente não importa quem é identificado como R, quem como é identificado com S, etc. Observamos que com 5 casais, necessariamente todas as mulheres (denotadas pelas letras r, s, t, u, v) estão sentadas três lugares à direita do seu marido ou três lugares à esquerda, pois é impossível que algumas fiquem três lugares à direita e outras três lugares à esquerda. Sendo assim, só temos duas possíveis maneiras de dispor os casais, as quais mostramos abaixo.

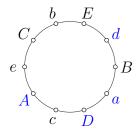


Denotamos agora por A e a o senhor e a senhora Alves, respectivamente, B e b o senhor e a senhora Barreira, e assim por diante. Ambos arranjos mostrados acima

apresentam a mesma ordem entre os homens e entre as mulheres. Assim, se a senhora e esta sentada a dois lugares da senhora e, então o senhor e deve estar sentado dois lugares à direita do senhor e. Adicionalmente, se o senhor e se encontra dois lugares à esquerda do senhor e, então os dois arranjos possíveis são



Porém, o arranjo (a) não é possível pois a senhora c deve estar sentada à direita do senhor A. Descartamos, portanto, o arranjo (a) e então em (b) substituímos T por A e t por a o qual leva a subsequente substituição de S por D e s por d. Assim, a disposição final é



Concluímos, portanto, que a senhora Evaristo está sentada à esquerda do senhor Alves.

Resposta: (B)

9. Seja

$$f(0,n) = n+1, (i)$$

$$f(k,0) = f(k-1,1), (ii)$$

$$f(k+1, n+1) = f(k, f(k+1, n)). (iii)$$

Se utilizamos (iii) duas vezes obtemos

$$f(2,2) = f(1+1,1+1) = f(1,f(1+1,1)) = f(1,f(1+1,0+1))$$

= $f(1,f(1,f(2,0))).$ (G₁)

Utilizando (ii) e (iii),

$$f(2,0) = f(1,1) = f(0, f(1,0)). (G_2)$$

Aplicando (ii) e (i) resulta

$$f(1,0) = f(0,1) = 1 + 1 = 2.$$
 (G₃)

Das equações (G_2) e (G_3) , f(2,0) = f(0,2), e de (i), f(0,2) = 2 + 1 = 3. Assim,

$$f(2,0) = f(1,1) = 3. (G_4)$$

Observamos que de (G_1) e (G_4) ,

$$f(2,2) = f(1, f(1,3)). (G_5)$$

É simples ver que para calcular f(1,3) (utilizando (iii) e (i)), primeiro devemos obter f(1,2), para o qual precisamos de f(1,1). Generalizamos estes passos da seguinte maneira,

$$f(1,m) = f(0+1,(m-1)+1) = f(0,f(1,m-1)) = f(1,m-1)+1.$$

Já temos f(1,1) = 3, portanto f(1,2) = 4, f(1,3) = 5 e f(1,4) = 6; logo (G_5) pode ser escrita, utilizando mais uma vez (iii) e (i), como

$$f(2,2) = f(1, f(1,3)) = f(1,5) = f(0+1,4+1) = f(0, f(1,4))$$

= $f(0,6) = 7$.

Assim, a resposta é 7.

Resposta: (E)

10. Observamos primeiro que qualquer subconjunto (não vazio) do conjunto dos inteiros $C = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ fornece um destes números. Por exemplo, o subconjunto $\{1, 5, 7, 9\}$ fornece o inteiro 1579. Agora, um conjunto com n elementos apresenta 2^n subconjuntos (incluindo o conjunto vazio). Na pergunta temos n = 9, assim, a resposta é $2^9 - 1 = 511$, pois devemos excluir o conjunto vazio.

Resposta: (A)