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Abstract. Windowing searches for a sample of the training set that
would provide better and smaller models than those obtained from the
entire set. Originally, the classi�ers are pruned only at the end of each
trial, and the technique is considered to be interesting in unbalanced
datasets. We have performed experiments to verify if pruning the inter-
mediary trees within a trial is bene�cial; if windowing is better than the
tree inducer alone; and the behavior of windowing in medical datasets
with di�erent class distributions. Our main conclusions are: windowing
is not better than the tree inducer alone and not bene�cial when com-
paring balanced and unbalanced domains. However when the emphasis
is on human understanding of the induced knowledge, as well as on ex-
tensibility, windowing tends to build smaller trees, which are more likely
to be interpreted by humans, without signi�cant di�erences in AUC.

1 Introduction

Windowing is a technique whose idea is to �nd a subsample of a dataset that
provides enough information for an inducer to train a classi�er and have results
similar to or better than those achieved by training a model from the entire
dataset, reducing the complexity of the learning problem [6]. This way, window-
ing can be seen as a subsampling technique [22], but, unlike other subsampling
techniques (e.g., bootstrapping), windowing tend to provide more class balanced
and informative samples. Windowing was �rst proposed by [21] in the context
of decision trees as a way to deal with memory restrictions in the late 1970's to
some relatively large datasets. [20] argues windowing is interesting for two rea-
sons: i) in some cases, especially those free of noise, it may make the time taken
to build the model shorter (e.g., when the dataset is very large and a model
that perfectly classi�es all training instances is achieved in the �rst iterations).
For most cases, however, windowing makes that time longer; ii) windowing may
produce more accurate classi�ers. Memory is still an issue, given the existence
of huge databases on medical and biological domains.

The study in [5] states that windowing contributes to better threshold choices
for continuous attributes in decision tree induction. In [16], windowing is seen
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as a way to make unstable learning algorithms more stable. Some other studies
have explored windowing in the context of rule induction [11], as they have
noted the technique produces better results with that kind of inducer than with
decision trees, since rules are learned independently of each other and are less
susceptible to changes in the class distribution. In spite of the experience Quinlan
had with windowing, those studies also state that the technique is not good to
be used with decision trees, especially in noisy domains [12]. Possibly because of
that, very little has been researched towards improving the combination between
windowing and decision trees. Our group believes there is still some aspects
of windowing that could be explored further, e.g., applying the technique in
domains with balanced and unbalanced class distribution, which we will discuss
here.

Our group has been focusing on symbolic classi�ers, i.e., those which can
be written as a set of rules. Instead of just concerning about accuracy or any
other performance measure, this kind of classi�er can also be used as a way to
provide insights on the domain being considered when interpreted by humans,
a very important characteristic in the medical domain [13]. In this context, one
advantage of windowing over other techniques used to improve classi�ers' perfor-
mance is that its use with symbolic classi�ers still provides symbolic classi�ers.
Our contribution here evaluates windowing in medical datasets with di�erent
class distribution, verifying if it performs better than the decision tree inducer
alone and in unbalanced domains.

The remaining sections are organized as follows: Section 2 gives details about
windowing and describes the objectives of this study; Section 3 describes some
functions to measure class distribution balance; Section 4 introduces the datasets
used here; Section 5 describes in detail the experiments performed and whose
results are shown in Section 6. Conclusions are presented in Section 7.

2 Windowing

This section describes windowing as it is implemented in c4.5 Release 8. Algo-
rithm 1 shows the pseudo-code of windowing, where N represents the number
of instances in the training set and xi and yi (i = 1, . . . , N) represent a vector
containing the attribute values and the class label for instance i, respectively.
The ‖ E ‖ operator returns 1, if E is true, or 0, otherwise.

Before the learning process begins, a subset of the training set is chosen,
forming the initial window (Line 3), from which a model is induced (Line 6);
the model is then used to predict the class of all training examples, which might
produce some misclassi�cations (Lines 8-9); if the errors found are less than the
errors of the best classi�er so far (initially, N+1), the current classi�er is kept as
the best one (Lines 10-13); if there were errors outside the window, the window is
updated and used to train another classi�er; the resulting model is tested again
and the process is repeated until no misclassi�cations occur outside the window.

The initial window is not actually sampled randomly. First the training set
is shu�ed; then the algorithm tries to build a window as uniform as possible,
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Algorithm 1 Windowing

Require: Instances: a set of N labelled instances {(xi, yi), i = 1, 2, . . . , N}
W : the initial window size, default value W ← max{0.2N, 2

√
N}

I: the tentative window increment, default value I ← max{0.2W, 1}
Ensure: bestClassi�er: the best classi�er found
1: procedure window(Instances,W ,I)
2: N ← size(Instances)
3: window ← sample(W ,Instances)
4: bestClassi�erErrors ← N + 1
5: repeat
6: classi�er ← induceClassi�er(window)
7: [classi�er ← prune(classi�er)]
8: windowErrors ←

∑
xi∈window ‖ classi�er(xi) 6= yi ‖ // Errors within the

window
9: testErrors←

∑
xi 6∈window ‖ classi�er(xi) 6= yi ‖ // Errors outside the win-

dow
10: if (windowErrors + testErrors < bestClassi�erErrors) then
11: bestClassi�er ← classi�er
12: bestClassi�erErrors ← windowErrors + testErrors
13: end if
14: increment ← max(min(testErrors, I), testErrors /2)
15: increment ← min(increment, N - size(Instances − window))
16: window← window + getMisclassi�edInstances(increment, Instances − window)

17: until (testErrors = 0)
18: [bestClassi�er ← prune(bestClassi�er)]
19: return bestClassi�er

i.e., the class distribution gets to be as balanced as possible. Considering c as
the actual number of all class values of a dataset and E = W/c as the expected
number of instances for each class value in the initial window W , for any given
class value, if the number of instances labelled with it is at least equal to E , then
it will be represented by E instances in the initial window; otherwise, all instances
representing that class value will be added to the window. This often leads to
better results, especially in cases of unbalanced classes [20]; it also contributes
to better threshold choices for continuous attributes [5]. In spite of being as
uniform as possible, the class distribution and the examples chosen to be in the
initial window are subject to a random sampling, which means that one may
have di�erent initial windows, leading to di�erent decision tree classi�ers.

As it can be seen in Algorithm 1, at least half of the misclassi�ed examples
outside the window is added to it at each iteration (Lines 14-16), provided that
there are enough examples. This is done to make the model converge faster. The
method getMisclassifiedInstances (Line 16) takes increment misclassi�ed
examples from outside the window and adds them to the window.

The process can be repeated more than once. Each repetition is called a trial
and starts with a di�erent initial window, which often generates a di�erent �nal
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classi�er. By default, c4.5 uses 10 trials. For the output, it o�ers 2 possibilities:
i) the best tree classi�er from all trials is returned to the user; or ii) the system
takes the best classi�er of each trial and combines them into only one rule-based
classi�er. In this paper, we are going to focus on the former.

An important point concerns the fact that, in the original implementation,
only the best tree of each trial is pruned, and that is done only when the trial
is over (Line 18). Line 7 is not present in Quinlan's implementation, so that all
intermediary trees within a trial are kept unpruned and, to decide which tree is
the best so far within the current trial, the algorithm uses the sum of the errors
found in the whole training set. At the end of each trial, the tree returned is
pruned and its estimated errors are compared to the estimated errors of the best
tree found in all trials processed so far. The process of pruning trees is known
to be important because it helps the tree improve its generalization error.

Considering these ideas, we have performed experiments including Line 7 in
order to verify if pruning intermediary trees within a trial is worth the extra
e�ort. For completeness, we have also evaluated if the original windowing (i.e.,
without Line 7) brings signi�cant bene�ts over the tree inducer alone. Since [20]
states that windowing is not guaranteed to return better results, but it should
be tried especially in unbalanced domains, the experiments have been performed
in datasets with di�erent class distributions. The question that arises from it is
how to numerically measure class distribution balance.

3 Impurity Functions as Class Balance Measures

Since we have used datasets with very di�erent numbers of classes (from 2 to 43),
the class distribution itself cannot be considered a comparable measure. First
assume there are c classes numbered 1, 2, . . . , c and denote the proportions of the
classes by p = (p1, p2, . . . , pc). We are looking for some function φ(p) obeying
the following properties: (i) it is a symmetric function of p; (ii) its maximum is
achieved when all pj = 1/c; (iii) its minimum is achieved when pi = 1 and every
other pj = 0 (for all j 6= i) and (iv) its range is [0, 1], i.e., φ(p) : Rc → [0, 1],
where a value close to one is obtained when class proportions are more balanced
(close to a uniform distribution) and a value close to zero is obtained when class
proportions are more unbalanced. Functions obeying the �rst three properties
are known as impurity functions [4, p. 32]. The range of some known impurity
functions is usually R+, but limited by some constant (once c is �xed). Therefore,
some appropriate normalization is needed in order to ensure the fourth property.

In this study we suggest four di�erent measures, shown in (1) product-
of-frequency-based, (2) entropy-based, (3) frequency-based and (4) gini-based,
where ni is the number of instances belonging to class i and, therefore, pi =
ni/N . For numerical precision, the second form of (1) is preferable. Figure 1
shows how they behave in 2-class datasets. It is straightforward to show that φb
and φg are equivalent for 2-class domains, which does not hold for c > 2.
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Fig. 1. Behavior of measures φb, φe, φf and φg in 2-class distribution problems.

4 Datasets

The experiments reported here used 32 datasets, all of which representing real
medical data. The medical domain often imposes di�cult obstacles to learning
algorithms: high dimensionality, huge or very small amounts of instances, sev-
eral possible class values, unbalanced classes, etc. The biomedical domain is of
particular interest since it allows to evaluate windowing under real and di�-
cult situations often faced by human experts. Table 1 shows a summary of the
datasets, none of which having missing values for the class attribute.

Breast Cancer, Lung Cancer, CNS (Central Nervous System Tumour Out-
come), Colon, Lymphoma, GCM (Global Cancer Map), Ovarian 61902, ECML
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Table 1. Summary of the datasets used in the experiments. ATTR, a# and aa stand
for the total number of attributes and for the number of numerical and nominal at-
tributes, respectively; MISS represents the percentage of attributes with missing values,
not considering the class attribute; the last four columns bring measures of class dis-
tribution balance, as de�ned by (1), (2), (3) and (4). Datasets are in ascending order
of φb.

# Dataset N c ATTR(a#,aa) MISS φb φe φf φg

1 Allhyper 3772 5 29 (7, 22) 5.54% 0.00 0.09 0.03 0.07

2 C. Arrhythmia 452 16 279 (206, 73) 0.32% 0.00 0.65 0.40 0.73

3 Thyroid 0387 9172 32 29 (7, 22) 5.50% 0.00 0.36 0.24 0.46

4 Allhypo 3772 4 29 (7, 22) 5.54% 0.00 0.23 0.10 0.19

5 ECML 90 43 27679 (27679, 0) 0.00% 0.00 0.96 0.76 0.99

6 Lymphoma 96 9 4026 (4026, 0) 5.09% 0.01 0.77 0.58 0.82

7 Lymphography 148 4 18 (3, 15) 0.00% 0.02 0.61 0.39 0.71

8 ANN Thyroid 7200 3 21 (6, 15) 0.00% 0.03 0.28 0.11 0.21

9 P. Patient 90 3 8 (0, 8) 0.42% 0.11 0.62 0.43 0.63

10 Hypothyroid 3163 2 25 (7, 18) 6.74% 0.18 0.28 0.10 0.18

11 HD Switz. 123 5 13 (6, 7) 17.07% 0.20 0.85 0.63 0.89

12 Sick 3772 2 29 (7, 22) 5.54% 0.23 0.33 0.12 0.23

13 GCM 190 14 16063 (16063, 0) 0.00% 0.39 0.97 0.82 0.99

14 Dermatology 366 6 34 (1, 33) 0.06% 0.49 0.94 0.80 0.96

15 Hepatitis 155 2 19 (6, 13) 5.67% 0.66 0.73 0.41 0.66

16 H. Survival 306 2 3 (2, 1) 0.00% 0.78 0.83 0.53 0.78

17 Splice Junction 3190 3 60 (0, 60) 0.00% 0.81 0.93 0.72 0.92

18 Breast Cancer 286 2 9 (0, 9) 0.35% 0.84 0.88 0.59 0.84

19 WBC 699 2 9 (9, 0) 0.25% 0.90 0.93 0.69 0.90

20 C. Method 1473 3 9 (2, 7) 0.00% 0.90 0.97 0.84 0.97

21 Leukemia nom. 72 2 7129 (0, 7129) 0.00% 0.91 0.93 0.69 0.91

22 Leukemia 72 2 7129 (7129, 0) 0.00% 0.91 0.93 0.69 0.91

23 Pima Diabetes 768 2 8 (8, 0) 0.00% 0.91 0.93 0.70 0.91

24 CNS 60 2 7129 (7129, 0) 0.00% 0.91 0.93 0.70 0.91

25 Colon 62 2 2000 (2000, 0) 0.00% 0.92 0.94 0.71 0.92

26 Ovarian 61902 253 2 15154 (15154, 0) 0.00% 0.92 0.94 0.72 0.92

27 HD Hungarian 294 5 13 (6, 7) 20.46% 0.92 0.94 0.72 0.92

28 WDBC 569 2 30 (30, 0) 0.00% 0.94 0.95 0.75 0.94

29 Lung Cancer 32 3 56 (0, 56) 0.28% 0.96 0.99 0.89 0.99

30 Liver Disorders 345 2 6 (6, 0) 0.00% 0.97 0.98 0.84 0.97

31 Heart Statlog 270 2 13 (13, 0) 0.00% 0.99 0.99 0.89 0.99

32 HD Cleveland 303 5 13 (6, 7) 0.18% 0.99 0.99 0.91 0.99

(European Conference on Machine Learning), Leukemia, Leukemia nom., WBC

(Wisconsin Breast Cancer),WDBC (Wisconsin Diagnostic Breast Cancer), Lym-
phography and H. Survival (H. stands for Haberman's) are all related to cancer
and their attributes consist of clinical, laboratory and gene expression data.
Leukemia and Leukemia nom. represent the same data, but the second one had
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its attributes discretized [19]. C. Arrhythmia (C. stands for Cardiac), Heart Stat-
log, HD Cleveland, HD Hungarian and HD Switz. (Switz. stands for Switzerland)
are related to heart diseases and their attributes represent clinical and laboratory
data. Allhyper, Allhypo, ANN Thyroid, Hypothyroid, Sick and Thyroid 0387 are
a series of datasets related to thyroid conditions. Hepatitis and Liver Disorders

are related to liver diseases, whereas C. Method (C. stands for Contraceptive),
Dermatology, Pima Diabetes (Pima Indians Diabetes) and P. Patient (P. stands
for Postoperative) are other datasets related to human conditions. Splice Junc-

tion is related to the task of predicting boundaries between exons and introns.
Datasets were obtained from the UCI Repository [9], except CNS, Colon, Lym-
phoma, GCM and ECML were obtained from [2]; Ovarian 61902 was obtained
from [3]; Leukemia and Leukemia nom. were obtained from [1].

As it can be seen in Table 1, the four measures given by (1), (2), (3) and (4)
may produce di�erent dataset orders. When comparing them among datasets
with the same number of classes, we would expect the same order, but that is
not guaranteed to happen when comparing datasets with a di�erent number of
classes. Figure 2 shows the behavior of the four measures over the datasets.

5 Experimental Methodology

The experiments reported here were performed in Weka [14]. Instead of c4.5,
we have used j48, and, since Weka does not provide any implementation of
windowing, a Weka's Java class, named weka.classifiers.meta.Windowing,
was implemented as a meta-inducer, following the rules and standards de�ned
by Weka. Our implementation of windowing was based on c4.5, including all its
features, except for the possibility to build a single rule-based classi�er out of
the best trials' classi�ers, which remained as a feature yet to be implemented.

The implementation allows the choice of any inducer available in Weka to
be used as the base inducer (Line 6 of Algorithm 1). For our purposes, the base
inducer was j48. For our analysis, we have considered three inducers: 1) pruned
j48; 2) windowing using j48 as the base classi�er, where the intermediary trees
were kept unpruned and only the trial best trees were pruned (like in c4.5, i.e.,
Algorithm 1 without Line 7 but including Line 18), referred to as WTP further
on; and 3) windowing using j48 as the base classi�er, but pruning every tree, even
the ones generated within the trials (Algorithm 1 without Line 18 but including
Line 7), denoted as WAP from now on. Besides the pruning option, every other
parameter was kept with its default value.

The two measures chosen to analyze the results are the weighted average
area under the ROC curve and the �nal tree size (from now on, we'll refer to
them as AUC and SIZE, respectively). We here consider smaller trees to be
better than larger ones, considering all other measures the same, because smaller
trees tend to be simpler and more accepted by domain experts. The experiments
were performed with ten repetitions of 10-fold cross validation. The average of
all repetitions for a certain inducer on a certain dataset was taken as the value
of performance (AUC and SIZE) for that pair.
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Fig. 2. Measures φb, φe, φf and φg over our 32 datasets (in ascending order of φb).

In order to analyze if the di�erences observed were signi�cant, we have used
the Friedman test [10], a non-parametric technique based on ranks and widely
used by the machine learning community. The most important advantage of
choosing a non-parametric approach is not making the assumption of any prior
probability distribution for the variables being considered (ANOVA, for example,
assumes a normal distribution). For the case of rejecting the null hypothesis
(which states that di�erences in the data are obtained by chance), a post-hoc test
is necessary to check in which classi�er pairs the di�erences actually are [7]. Again
we chose a non-parametric approach and the p-values found for the possible pairs
were adjusted according to [15], which describes a multiple test procedure that
controls the family wise error rate. The tests were implemented and performed
using the R software for statistical computing (http://www.r-project.org/).
We have performed two kinds of tests: 1) versus control, using j48 as the control
and verifying if the windowing inducers performed di�erently than it; and 2) all
versus all, making all possible comparisons among the three inducers. All results
reported in Section 6 consider a signi�cance level of 5%.

To verify if windowing could bring bene�ts when applied to unbalanced
datasets, these would have to be ordered by how balanced they are. At this
point, we had to choose, among the four measures, which to use in our experi-
ments. This task is equivalent to decide which splitting criteria should be used
under decision tree induction, and therefore it has no single answer. We chose φb
to order the datasets in our experiments, based in our perception and experience
of working with classi�cation tasks; the other three seem to be too optimistic.
In some cases, such as when it disagrees more with the other three, giving a
much lower value than them, the datasets were quite unbalanced and φe, φf
and φg tended to give high scores. We found φb more realistic, but for some
tasks the other three measures could be good as well. We have then ordered
the datasets according to φb and chosen as a threshold the value of 0.50, which
resulted in a group of 14 unbalanced datasets (below 0.50) and another of 18
balanced datasets. We applied the same statistical tests to the two groups.
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6 Results and Discussion

The results of the experiments are shown in Table 2. As it can be seen, j48
alone had a better average rank than the other two inducers and WTP had
a slightly better average rank than WAP. After performing the tests with all
datasets, no signi�cant di�erences in the AUC values were found in either case
(against-a-control and all-versus-all).

Considering the SIZE values, the test found signi�cant di�erences. In the
all-versus-all case, the signi�cant di�erences found were: WTP is better than
WAP, with a p-value of less than 2.00 × 10−6; and j48 is better than WAP,
with a p-value of 2.43× 10−5. In the against-a-control case, the only signi�cant
di�erence found was between j48 and WAP, with a p-value of 2.43 × 10−5. In
spite of not being signi�cant, WTP has a better average rank than j48. Trees
provided by WTP are sometimes larger than those provided by j48, but they are
notably smaller in some cases, for instance, H. Survival or Ovarian 61902.

When comparing the AUC values of the two groups of datasets (the balanced
�rst 14 and the unbalanced last 18), the results showed that: for the balanced
group, there were no signi�cant di�erences in either case (against-a-control and
all-versus-all), with p-values greater than 0.20, but j48 had a better average rank
than the other two, and WAP was slightly better than WTP; for the unbalanced
group, there were no signi�cant di�erences either, with p-values greater than
0.70, but WTP was better than j48 (a little improvement, compared to the
other group).

Considering the SIZE values: for the balanced group, WTP has done better
(but not signi�cantly) than j48 and both were signi�cantly better than WAP; for
the unbalanced group, j48 and WTP were similar and both were still signi�cantly
better than WAP. WAP had trees signi�cantly larger than the other two inducers
in all cases. This might have happened because, during training, the inducer
found some pruned trees that seemed to be better (but larger), but the AUC
values for WAP were not worth the extra e�ort of pruning all trees.

7 Conclusion

In this paper, a study on windowing has been conducted. The technique is a
general purpose sampling method designed to enable induction of decision trees
to address the problem of analyzing large datasets, already available, for exam-
ple, in the form of medical and biological data. Also, the automated discovery of
symbolic models is expected to be a common and important feature in medical
and biological domains. In comparison, the datasets used here are of modest
size. Nevertheless, they have been su�cient to illustrate the potential utility of
windowing in some domains.

Based on the experiments performed, it is possible to state that pruning the
intermediary trees didn't represent a bene�t over pruning only the trials best
trees, in spite of being more expensive. WAP was actually a little worse than
WTP when considering AUC and signi�cantly worse when considering SIZE.
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Table 2. AUC and SIZE values observed in the experiments. The datasets are in
ascending order of φb. The last lines show the average rank in each case.

AUC SIZE

# Dataset j48 WTPWAP j48 WTP WAP

1 Allhyper 0.91 0.95 0.93 27.88 31.20 33.02

2 C. Arrhythmia 0.73 0.73 0.73 80.62 81.80 89.92

3 Thyroid 0387 0.98 0.98 0.98 375.42 337.30 357.04

4 Allhypo 1.00 1.00 1.00 27.88 26.64 27.26

5 ECML 0.54 0.55 0.55 57.22 58.30 57.88

6 Lymphoma 0.87 0.82 0.83 14.94 16.14 16.00

7 Lymphography 0.77 0.79 0.79 28.00 25.81 31.18

8 ANN Thyroid 0.99 0.99 0.99 33.60 33.36 37.96

9 P. Patient 0.49 0.49 0.43 1.36 2.18 10.12

10 Hypothyroid 0.95 0.95 0.95 12.42 14.04 15.08

11 HD Switz. 0.58 0.57 0.57 36.86 39.13 47.13

12 Sick 0.95 0.96 0.95 49.38 46.99 53.26

13 GCM 0.79 0.78 0.78 37.02 37.52 38.14

14 Dermatology 0.98 0.98 0.98 35.96 26.88 30.36

15 Hepatitis 0.67 0.72 0.75 17.66 15.44 20.60

16 H. Survival 0.57 0.62 0.57 21.84 5.26 33.36

17 Splice Junction 0.97 0.96 0.96 216.94 198.83 233.76

18 Breast Cancer 0.61 0.61 0.56 12.78 13.23 41.16

19 WBC 0.96 0.94 0.94 23.46 19.10 28.46

20 C. Method 0.66 0.67 0.66 247.96 225.52 298.44

21 Leukemia nom. 0.90 0.86 0.88 10.39 9.31 10.33

22 Leukemia 0.81 0.79 0.77 4.30 4.60 4.76

23 Pima Diabetes 0.75 0.70 0.73 43.40 47.94 54.68

24 CNS 0.55 0.51 0.53 7.92 8.00 8.34

25 Colon 0.81 0.77 0.75 6.98 7.00 7.02

26 Ovarian 61902 0.96 0.99 0.98 10.04 5.04 5.52

27 HD Hungarian 0.78 0.77 0.79 10.53 13.00 20.43

28 WDBC 0.93 0.93 0.94 22.46 21.84 24.86

29 Lung Cancer 0.60 0.61 0.61 13.04 12.96 16.22

30 Liver Disorders 0.65 0.63 0.63 50.02 53.00 61.06

31 Heart Statlog 0.79 0.77 0.76 34.64 33.94 44.62

32 HD Cleveland 0.77 0.75 0.78 42.52 38.91 57.43

Average rank (all) 1.84 2.05 2.11 1.69 1.53 2.78

Average rank (�rst 14) 2.00 1.89 2.11 1.64 1.71 2.64

Average rank (last 18) 1.72 2.17 2.11 1.72 1.39 2.89

We could conclude that pruning the intermediary trees is not enough to bring
bene�ts by itself. Under these considerations, other changes to the algorithm
would be necessary, e.g., considering the estimated error as the error of a classi�er
within a trial, just like what happens with the trials best trees (future work).
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As one adds examples to the window, the number of unseen instances de-
creases. This situation increases the chances to get a classi�er with fewer errors,
i.e., trees at the beginning of a trial have less chances to be considered better
than trees at the end. At the limit, all examples are inside the window, which
guarantees that there will be no errors outside it (we will have only the resub-
stitution error, which is optimistic), even when the resulting tree is not the one
with the best generalization power. This might be another motivation to suggest
the estimated generalization error and not the errors found outside the window
or even a combination of the two could also be considered.

Considering only accuracy and size, our results don't show a signi�cant ad-
vantage of using windowing, not even for unbalanced cases, although it was a
little better than for the balanced ones. One apparent advantage that could be
pointed out is that WTP produced better average results for SIZE than j48,
although this di�erence was not signi�cant. On the other hand, j48 was even
better for AUC values than the two versions of windowing, although that dif-
ference was not signi�cant either. Our results con�ict with Quinlan's experience
with windowing, which shows that windowing rarely provides worse trees, but
agree with other authors, who say windowing is not suitable for decision trees
in noisy domains. As future work, we will try and �nd a way to minimize the
e�ect of noise on the algorithm.

[20] states that windowing rarely produces worse trees than the tree inducer
alone. On the other hand, the literature has not shown such good results. For
example, [8] states that windowing has its performance deteriorated in noisy
domains, because it ends up adding all noisy instances to the window, since
these are very likely to be misclassi�ed even by a good model [18]. Our results
agree with the latter, but we think there is still some improvement to make on
windowing, e.g., �nding a way to deal with noise.

Very great attention has been given to performance measures such as AUC,
leaving the interpretation of the resulting model at a lower level, even when
analyzing symbolic classi�ers. There are many di�erent methods for constructing
decision trees, although none of them is universally the best, since di�erent
application domains lead to di�erent problems, requiring di�erent solutions. It
is then expected that a combination of methods, like the one proposed in this
work, may yield better classi�cation models in some cases. In this study, we
have shown windowing tend to build smaller classi�ers, which are more likely to
be interpreted by humans, without signi�cant di�erences in terms of AUC. On
another study, we have applied windowing to the classi�cation task of predicting
peptide activity. In that case, windowing has performed better than J48 alone
in terms of accuracy and useful knowledge. The specialists involved in the study
have selected some laboratory experiments based on the tree that windowing
provided and they have reported interesting biological results [17].
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